

Contents

- 2 WinGD
- 4 WinGD Ecosystem of Solutions
- 6 A History of Engine Development
- 8 Research and Testing
- 10 Merchant Ship Applications
- 16 WinGD Low-speed Engines
- 20 WinGD Portfolio
- 22 Engine Designation
- 23 X-DF LNG Engines
- 40 X-DFAmmonia Engines
- 46 X-DF LPG Engines
- 49 X-DF Methanol Engines
- 58 X-Engines Diesel
- 65 General Technical Data Application

- 66 Engine Definitions and Notes
- 68 WinGD Technologies
- 68 X-DF Technology
- 70 X-DF-A Technology
- 72 X-DF-PTechnology
- 74 X-DF-M Technology
- 76 Variable Compression Ratio (VCR) Technology
- 80 X-DF2.0 Technology

LNGPOWERED

- 82 WiCE (WinGD Integrated Control Electronics)
- 84 IMO Tier III Solutions
- 85 Cylinder Lubrication
- 87 Steam Production Control
- 88 X-EL Integrated Energy Solutions
- 92 WiDE (WinGD integrated Digital Expert)

LNGPOWERED

- 96 Global Service by WinGD
- 100 Engine Retrofits & Upgrades
- 102 Training

- 106 Contacts
- 106 WinGD Offices
- 108 WinGD Sales Agents
- 110 WinGD Global Service Partner
- 111 Engine Builder Service Contacts
- 113 WinGD Engine Builders

All data provided in this booklet is for information purposes only, explicitly non-binding and subject to change without notice. The General Technical Data (GTD) program provides up-to-date information on WinGD low-speed engines.

When referring to specific engines, the data may be subject to changes. These will be assessed individually according to the particular characteristics of each project.

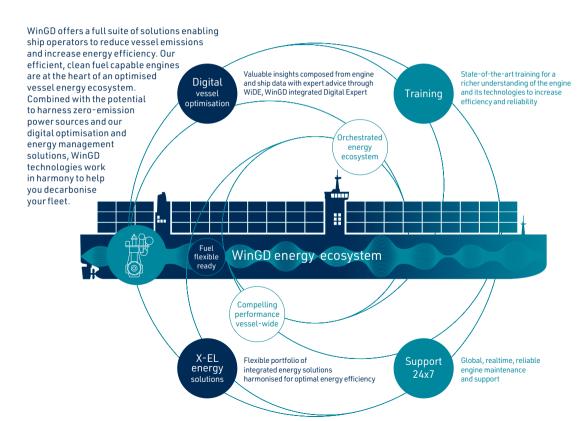
WinGD

Compelling performance for a sustainable future

As shipping navigates its most significant transformation in modern history, 2025 stands as a pivotal year in the journey towards our decarbonised future. Stricter global regulations, the rising cost of carbon emissions and the urgent need to increase the availability and use of alternative fuels are redefining the industry approach to energy and propulsion.

This moment of change demands innovation, adaptability and collaboration across the shipping value chain.

WinGD's expertise in two-stroke engine technology and the wider vessel energy system has never been more critical. Our engines are at the forefront of the energy transition, enabling the use of clean fuels such as green ammonia, methanol, biodiesel


and bio-LNG. Our advances in hybrid power and digital optimisation are unlocking efficiencies that will be essential for controlling cost and maximising emission reductions in a multi-fuel future.

Our growing engine portfolio showcases the latest advances in clean fuel capable two-stroke technology.

Designed for reliable and efficient ship operation with low capital and operating costs, these engines are optimised for reduced emissions and compliance with emerging regulations - giving shipowners the options they need as they consider their sustainable fleet investments.

Within these pages, you'll find the culmination of decades of innovation, collaboration, and commitment to reducing emissions. From robust fuel flexibility to digital solutions that optimise fleet performance, this portfolio offers a roadmap to navigate the challenges and opportunities of the decarbonisation era.

Orchestrating energy efficiency across your vessel

Beyond our proven product portfolio, WinGD's global network of engineers, service partners and training providers help customers use our solutions as safely, reliably and efficiently as possible – wherever, whenever and across the entire vessel lifecycle.

WinGD delivers quality ship owners can trust through:

- Engine design
- Reliable performance
- Reduced emissions
- Integrated Energy Solutions (X-EL)
- Digital optimisation (WiDE)
- Warranty service and support
- 24x7 customer support
- Crew training
- Service solutions

4 5

From Sulzer to WinGD. A History of Engine Development

WinGD's engine design history dates back to the late 1800s. That history bore witness to remarkable progress and growth. But the challenge the industry faces today is the most significant to date. It is change that spans industry and expertise, connecting the globe in the fight against climate change.

WinGD originated from the diesel engine business of Sulzer Corporation in Winterthur, established in 1834 when the Sulzer Brothers signed an agreement with Rudolf Diesel for his new engine technology. On June 10th, 1898, the very first diesel engine was started in Winterthur, Switzerland, where WinGD is still headquartered today.

Powering merchant shipping for over a century

Manufacturing continued in Winterthur for nearly a century under the Sulzer name. In 1986, the last diesel engine left the Winterthur facility as engine manufacturing centres were now strategically located as close to the shipyard as possible. While the engine innovation research and design remains in Switzerland to this day, WinGD has expanded to a global operation with subsidiaries in the key shipbuilding hubs throughout the world.

Going forward to November 1990, Sulzer established its Diesel Engine & Diesel Power Plant Division as a separate company, New Sulzer Diesel Ltd.

WinGD is powering the transformation to a sustainable future

Towards the end of the 20th century a merger with Wärtsilä Diesel Oy created Wärtsilä New Sulzer Diesel Corporation which later became Wärtsilä Corporation. The Swiss company, Wärtsilä Switzerland Ltd., responsible for the low-speed, two-stroke engine within Wärtsilä, later merged with China State Shipbuilding Corporation (CSSC) in early 2015 forming Winterthur Gas & Diesel Ltd (WinGD). In 2016, Wärtsilä Corporation transferred its remaining shares of WinGD to CSSC making WinGD 100% owned by CSSC.

From designing the first reversing two-stroke marine engine in 1905 to the world's biggest dual-fuel low-speed engines in 2020, WinGD has continued to innovate with the aim of making shipping more efficient.

Along the way it has pioneered turbocharging on two-stroke engines (in 1946) and the first electronically controlled low-speed engine with common-rail injection, in 1998, Fuel flexibility is not a new concept for WinGD, which introduced the first low-speed gas engines for ships in 1972. The modern X-DF dualfuel - supplemented with X-DF2.0 technologies iCER (intelligent control by exhaust recirculation) and VCR (variable compression ratio) platform has been in service since 2016 and boasts the best overall emissions footprint available today. Now adapted for clean fuels such as ammonia and methanol, the proven X-DF engine platform is shaping the carbon-free future

Today WinGD is advancing the decarbonisation of marine transportation through sustainable energy systems using the most advanced technologies in emissions reduction, fuel efficiency, hybridisation and digital optimisation. With a growing portfolio of multi-fuel two-stroke low-speed engines at the heart of the power equation, WinGD is powering the transformation to a sustainable future.

7

Research and Testing

As engine designers, WinGD's expertise lies in technology innovation. As well as developing engines for new fuels and technologies to reduce air pollution, WinGD continuously seeks to improve both the efficiency and lifecycle costs of its engines.

To advance these concepts, WinGD has made considerable investments in expanding its research and development test facilities. These include the Engine Research and Innovation Centre in Winterthur and the Global Test Centre in Shanghai.

To learn more about WinGD's research and testing capabilities scan or click the QR code:

Merchant Ship Applications

WinGD's growing engine portfolio provides simple solutions to reduce emissions, fuel consumption and operating costs, improve safety and give shipowners and operators peace of mind.

WinGD offers fuel flexible, low-speed, dual-fuel X-DF engines and X-Engines. Supported by the most advanced technology in emissions reduction, automation and control, digitalisation and fuel efficiency, these engines provide simple, safe and flexible propulsion solutions.

Final engine choice is dependent on ship specification, investment and operating cost evaluation and preferred engine configuration.

For more information, download our Vessel Type Brochure at: www.wingd.com/news-media/ brochures-papers

Tanker

TANKER TYPE	WINGD LOW-SPEED ENGINES					
TTPE	X52 X52-S	X62 X62-S	X72	X82		
Small tanker	•					
Handysize tanker	•					
Panamax tanker		•				
Aframax tanker		•	•			
Suezmax tanker			•			
VLCC				•		

X-DF portfolio engines are available as an alternative to X-Engines WinGD offers integrated in-line shaft generator (X-EL) solutions for tankers

Name: Fnens Arrow VLCC 311,000 dwt Crude oil tanker Vesseltype:

Shipowner: JX Ocean

Shipvard: Japan Marine United, Ariake, Japan Delivery:

2017 Main engine: 7X82

Container Vessel

CONTAINER VESSEL TYPE –	WINGD LOW-SPEED ENGINES					
	X52 X52-S	X62 X62-S	X72	X82	X92	
700 - 1,100 TEU	•					
1,100 - 1,400 TEU	•					
1,400 - 2,500 TEU		•				
2,500 - 4,500 TEU			•			
4,500 - 11,000 TEU				•		
> 11000 TEU					•	

X-DF portfolio engines are available as an alternative to X-Engines

WinGD offers integrated in-line shaft generator (X-EL) solutions for container vessels

Name: Jacques Saade Vessel type: Shipowner:

23,000 TEU Container vessel CMACGMS.A.

Shipyard: Hudong-Zhonghua Shipbuilding (Group) Co., Ltd. China

2020 Delivery: Main engine: 12X92DF

Bulk Carrier

BULK CARRIER TYPE	WINGD LOW-SPEED ENGINES					
-	X52	X62	X72	X82		
	X52-S	X62-S				
Handysize bulkers	•					
Handymax bulkers	•					
Ultramax bulkers	•					
Kamsarmax bulkers		•				
Panamax bulkers		•				
Capesize bulkers			•			
VLOC				•		

X-DF portfolio engines are available as an alternative to X-Engines

WinGD offers integrated in-line shaft generator (X-EL) solutions for bulk carriers

Name: Vesseltype: Shipowner:

Shipyard:

Algoma Equinox 39,400 dwt Bulk carrier Algoma Central Corp., Canada Nantong Mingde Heavy

Industries, China

2013 Delivery: Main engine: 5RT-flex50

12 13

Multipurpose Vessel

VESSEL TYPE	WINGD LOW-SPEED ENGINES				
11112	X52	X62			
	X52-S	X62-S			
Small	•				
< 30,000 dwt	•				
> 30,000 dwt		•			

X-DF portfolio engines are available as an alternative to X-Engines

WinGD offers integrated in-line shaft generator (X-EL) solutions for multipurpose vessels

Name: Green Salvador
Vesseltype: 77,000 dwt Mult
Shipowner: CMB Financial L

77,000 dwt Multipurpose
 CMB Financial Leasing, China
 Cosco Shipping Heavy Industry

(Dalian) Co., Ltd

Delivery: 2024 Main engine: 6X62-S2.0

Gas Carriers

LNG CARRIER	WINGD LOW-SPEED ENGINES					
	X52DF	X62DF	X72DF			
<15,000	•					
15,000 - 30,000 m ³	•					
30,000 - 60,000 m ³		•				
60,000 - 170,000 m ³			•			
170,000 - 250,000 m ³		• twin-engine	• twin-engine			
LPG/AMMONIA	WINGD LOW-SPEED ENGINES					
CARRIER TYPE	X52DF-A/P		X62DF-A/P			
< 50,000 m ³	•					
> 50,000 m ³			•			

X-DF portfolio engines are available as an alternative to X-Engines
WinGD offers integrated in-line shaft generator (X-EL) solutions for gas carriers

Name: Gree Vesseltype: 174,0

Greenergy Ocean 174,000 CBM LNG Carrier

Shipowner: CNOOC & MOL **Shipyard:** Hudong-Zhong

d: Hudong-Zhonghua Shipbuilding (Group) Co Ltd., China

Delivery: 2024

Main engine: Twin 5X72DF-2.1

Shipyard:

WinGD Low-speed Engines WinGD low-speed engines are the optimal propulsion solution for merchant vessels with directly driven propellers. WinGD's well-proven electronically-controlled commonrail technology plays a key role in enabling shipowners to reduce fuel and lubricant costs. The benefits to shipowners and operators are: - Optimal power and speed - High reliability and for all ship types and sizes. durability. - Lowest possible fuel overhauls. and cylinder lube oil consumption over the whole operating range, especially at part load.

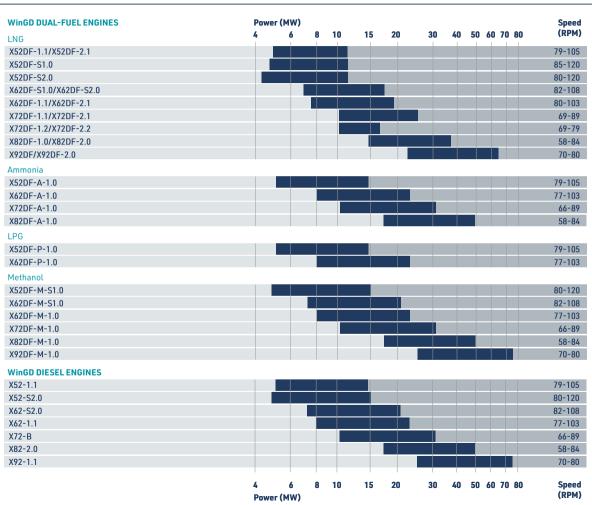
- Different tunings to suit

- Specific tuning to increase the exhaust gas temperature for increased steam production (when required). - The engines can be operated with residual marine fuels, distillate fuels DMA, DMB and DMZ and liquefied natural gas (LNG).

particular sailing profiles.

- Full compliance with IMO NO_X and SO_X regulations. - Up to five years between - Reduced maintenance requirements resulting in low operational costs. - Competitive capital cost.

WinGD Low-speed Engines

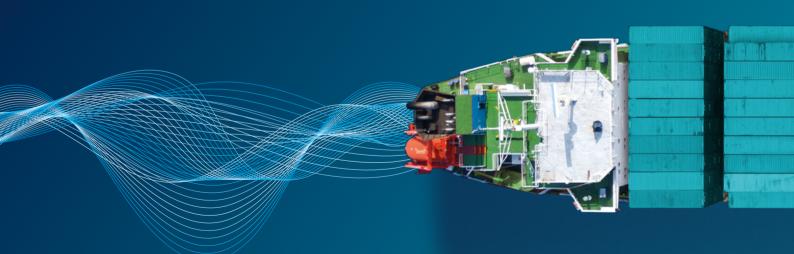

Power range for WinGD Low-speed Engines

WinGD offers Integrated In-line Shaft Generator Solutions that are:

Matched with the main engines to enable optimum energy efficiency, operational cost, and sustainability in extended operational ranges. Available for all types of merchant ship.

For integrated batteryhybrid applications, please refer to pages 88-91

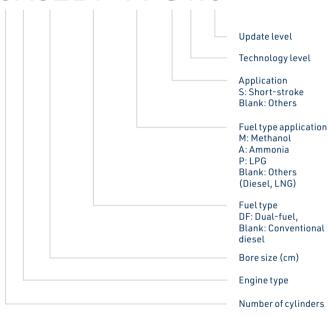
All data provided in this booklet is for information purposes only, explicitly non-binding and subject to change without notice. The General Technical Data (GTD) program provides up-to-date information on WinGD low-speed engines.



WinGD Portfolio

Orchestrated solutions working together for compelling performance. Our emissions reduction, automation and control, energy management and digital optimisation solutions are founded on our deep engine and energy system expertise.

Combined with our high-performance engines they enable customers to get the best from their vessel-wide energy ecosystem – putting ship owners and operators firmly in control of their fleet's fuel consumption, emissions and performance.


Maritime decarbonisation is an ensemble effort. WinGD's orchestra of solutions work in harmony to deliver finely tuned efficiency.

20 21

Engine Designation

6X52DF-A-S1.0

Example engine designation 6X52DF-A-S1.0 representing a WinGD 6 cylinder, short-stroke engine for dual-fuel operation with ammonia and diesel.

All data provided in this booklet is for information purposes only, explicitly non-binding and subject to change without notice. The General Technical Data (GTD) program provides up-to-date information on WinGD low-speed engines.

 $When \, referring \, to \, specific \, engines, \, the \, data \, may \, be \, subject \, to \, changes. \, These \, will \, be \, assessed \, individually \, according \, to \, the \, particular \, characteristic \, of \, each \, project.$

X52DF-1.1

IMO Tier III in gas mode

9 850

1 910

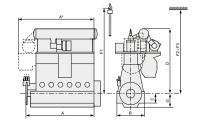
Cylinder bore	520 mm
Piston stroke	2 315 mm
Speed	79-105 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.45

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in kW at			Laurenth A	1	D	
Cyl.	105 rpm	m 79 rpm			Length A mm	Length A*	Dry mass tonnes
	R1 R2	R2	R3	R4			
5	7 450	6 200	5 600	4 650	5 985	6 990	217
6	8 940	7 440	6 720	5 580	6 925	7 930	251
7	10 430	8 680	7 840	6 510	7 865		288
8	11 920	9 920	8 960	7 440	8 805		323
			В	С		D	
	Dimensions		3 514	1 205		8 415	
	(mm)		F1	F2		F3	G

BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 201	6 962	7 299	7 064
BSGC (gas)	g/kWh	142.7	137.7	144.7	139.7
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8


10 400

10 350

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	184.1	182.1	184.1	182.1

For definitions see page 66.

X52DF-2.1

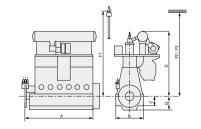
IMO Tier III in gas mode

Cylinder bore	520 mm
Piston stroke	2 315 mm
Speed	79-105 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.45

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Output	in kW at		I amouble A	D
	105 rpm		79 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	7 450	6 200	5 600	4 650	5 985	217
6	8 940	7 440	6 720	5 580	6 925	251
7	10 430	8 680	7 840	6 510	7 865	288
8	11 920	9 920	8 960	7 440	8 805	323
			_	_	_	

	В	C	D	
Dimensions	3 514	1 205	8 415	
(mm)	F1	F2	F3	G
	10 350	10 400	9 850	1 910


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 067	6 833	7 170	6 931
BSGC (gas)	g/kWh	140.1	135.1	142.1	137.1
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8

${\tt BRAKE\,SPECIFIC\,FUEL\,CONSUMPTION\,IN\,DIESEL\,MODE}$

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	181.4	175.4	183.4	179.4

For definitions see page 66.

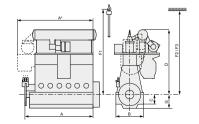
X52DF-S1.0

IMO Tier III in gas mode

Cylinder bore	520 mm
Piston stroke	2 045 mm
Speed	85-120 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.93

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

				_			
Cyl.	120 rpm	85	rpm		Length A mm	Length A* mm	Dry mass tonnes
	R1	R2	R3	R4			
5	7 500	6 250	5 325	4 425	5 485	6 5 6 5	190
6	9 000	7 500	6 390	5 310	6 345	7 415	215
7	10 500	8 750	7 455	6 195	7 205		245
8	12 000	10 000	8 520	7 080	8 065		275
			В	С		D	
	limensions		3 100	1 185		7 725	
	(mm)		F1	F2		F3	G
			9 340	9 340		8 800	1 675


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 201	6 962	7 299	7 064
BSGC (gas)	g/kWh	142.7	137.7	144.7	139.7
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	184.1	182.1	184.1	182.1

For definitions see page 66.

X52DF-S2.0

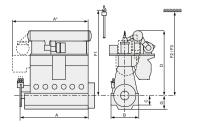
IMO Tier III in gas mode

Cylinder bore	520 mm
Piston stroke	2 045 mm
Speed	80-120 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.93

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		I amouth A	1 ammth A#	D			
Cyl.	120 rpm	80	80 rpm		Length A mm	Length A* mm	Dry mass tonnes
	R1	R2	R3	R4			
5	7 500	6 250	5 025	4 150	5 485	6 565	190
6	9 000	7 500	6 030	4 980	6 345	7 415	215
7	10 500	8 750	7 035	5 810	7 205		245
8	12 000	10 000	8 040	6 640	8 0 6 5		275

	В	С	D	
Dimensions	3 100	1 185	7 725	
(mm)	F1	F2	F3	G
	9 340	9 340	8 800	1 675


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 067	6 833	7 170	6 931
BSGC (gas)	g/kWh	140.1	135.1	142.1	137.1
BSPC (pilot fuel)	g/kWh	1.5	1.8	1.5	1.8

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	181.4	175.4	185.4	181.4

For definitions see page 66.

X-DF Dual-Fuel LNG

X62DF-1.1

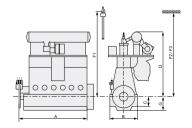
IMO Tier III in gas mode

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	80-103 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Locath A. Document				
	103 rpm		80 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	11 925	9 925	9 250	7 700	6 805	318
6	14310	11 910	11 100	9 240	7 910	370
7	16 695	13 895	12 950	10 780	9 020	428
8	19 080	15 880	14 800	12 320	10 125	475
			D	C	n	

	В	C	D	
Dimensions	4 200	1 360	9 580	
(mm)	F1	F2	F3	G
	11 775	11 775	10 950	2 110


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 167	6 928	7 269	7 026
BSGC (gas)	g/kWh	142.5	137.5	144.5	139.5
BSPC (pilot fuel)	g/kWh	1.0	1.2	1.0	1.2

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	182.0	180.0	182.0	180.0

For definitions see page 66.

X62DF-2.1

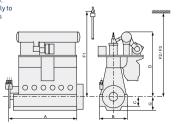
IMO Tier III in gas mode

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	80-103 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Longth A. Dover				
Cyl.	103 rpm	80 rpm		Length A mm	Dry mass tonnes	
	R1	R2	R3	R4		
5	11 925	9 925	9 250	7 700	6 805	318
6	14 310	11 910	11 100	9 240	7 910	370
7	16 695	13 895	12 950	10 780	9 020	428
8	19 080	15 880	14 800	12 320	10 125	475

Dimensions (mm)	В	С	D	D (iCER on-engine)
	4 200	1 360	9 580	10 910
	F1	F2	F3	G
	11 775	11 775	10 950	2 1 1 0


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 973	6 734	7 080	6 857
BSGC (gas)	g/kWh	138.8	133.8	140.9	135.9
BSPC (pilot fuel)	g/kWh	0.8	1.0	0.8	1.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	176.8	170.8	178.8	174.8
BSFC (VCR diesel Tier II)	g/kWh	166.8	165.8	167.8	165.8

X62DF-S1.0

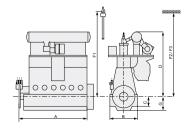
IMO Tier III in gas mode

Cylinder bore	620 mm
•	
Piston stroke	2 245 mm
Speed	82-108 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.62

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in	kW at		Longth A	Drymass
108 rpm	8:	82 rpm		mm	Dry mass tonnes
R1	R2	R3	R4		
10 550	8 775	8 000	6 675	6 2 6 0	280
12 660	10 530	9 600	8 010	7 260	325
14 770	12 285	11 200	9 345	8 2 6 0	370
16 880	14 040	12 800	10 680	9 260	415
	R1 10 550 12 660 14 770	108 rpm 8 R1 R2 10 550 8 775 12 660 10 530 14 770 12 285	108 rpm 82 rpm R1 R2 R3 10 550 8 775 8 000 12 660 10 530 9 600 14 770 12 285 11 200	R1 R2 R3 R4 10 550 8 775 8 000 6 675 12 660 10 530 9 600 8 010 14 770 12 285 11 200 9 345	Name

	В	C	D	
Dimensions	3 440	1 295	8 575	
(mm)	F1	F2	F3	G
	10 300	10 300	9 680	1 835


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 161	6 928	7 269	7 026
BSGC (gas)	g/kWh	142.5	137.5	144.5	139.5
BSPC (pilot fuel)	g/kWh	1.0	1.2	1.0	1.2

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	182.0	180.0	182.0	180.0

For definitions see page 66.

X62DF-S2.0

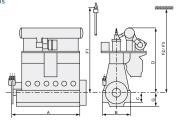
IMO Tier III in gas mode

Cylinder bore	620 mm
Piston stroke	2 245 mm
Speed	82-108 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.62

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output	in kW at		Length A	Drumace
Cyl.	108 rpm 82 rpm		mm	Dry mass tonnes		
	R1	R2	R3	R4		
5	10 550	8 775	8 000	6 675	6 260	280
6	12 660	10 530	9 600	8 010	7 260	325
7	14 770	12 285	11 200	9 345	8 260	370
8	16 880	14 040	12 800	10 680	9 260	415

	В	C	D	D (iCER on-engine)
Dimensions	3 440	1 295	8 575	9 496
(mm)	F1	F2	F3	G
	10 300	10 300	9 680	1 835


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 982	6 747	7 089	6 845
BSGC (gas)	g/kWh	138.8	133.9	140.9	135.9
BSPC (pilot fuel)	g/kWh	1.0	1.2	1.0	1.2

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	178.3	172.3	180.3	176.3

For definitions see page 66. iCER on-engine applies only to 5/6/7 cylinder applications

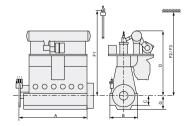
X72DF-1.1

IMO Tier III in gas mode

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	69-89 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW	at		Length A	Drv mass
Cyl.	89 rpm	69 rp	om		mm	tonnes
	R1	R2	R3	R4		
5	16 125	13 425	12 500	10 400	8 230	481
6	19 350	16 110	15 000	12 480	9 520	561
7	22 575	18 795	17 500	14 560	10 810	642
8	25 800	21 480	20 000	16 640	12 105	716
		В		С	D	
D	Dimensions	4 780		1 575	10 790	
	(mm)	F1		F2	F3	G
		13 655	1	3 655	12 730	2 455


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 150	6 906	7 248	7 004
BSGC (gas)	g/kWh	142.3	137.3	144.3	139.2
BSPC (pilot fuel)	g/kWh	0.8	1.0	0.8	1.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	182.0	180.0	182.0	180.0

For definitions see page 66.

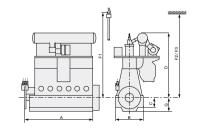
X72DF-1.2

IMO Tier III in gas mode

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	69-79 rpm
Mean effective pressure at R1	15.7 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in kW at			I amouth A	D	
Cyl.	79 rpm	69 r	pm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	13 000	11 900	11 350	10 400	7 875	470
6	15 600	14 280	13 620	12 480	9 1 6 5	550
		В		С	D	
D	imensions	4 780		1 575	10 790	
(mm)		F1		F2	F3	G
		13 655	1	3 655	12 730	2 455


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 052	6 955	7 113	7 004
BSGC (gas)	g/kWh	140.3	138.2	141.5	139.2
BSPC (pilot fuel)	g/kWh	0.9	1.0	0.9	1.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	180.8	180.0	180.9	180.0

For definitions see page 66. Engine optimised for reduced rating field and 5/6 cylinder applications

X72DF-2.1

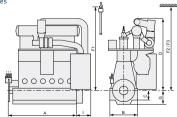
IMO Tier III in gas mode

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	69-89 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Output in kW at				Longth A	D
89 rpm	6	9 rpm		mm	Dry mass tonnes
R1	R2	R3	R4		
16 125	13 425	12 500	10 400	8 230	495
19 350	16 110	15 000	12 480	9 520	580
22 575	18 795	17 500	14 560	10 810	642
25 800	21 480	20 000	16 640	12 105	716
	R1 16 125 19 350 22 575	89 rpm 6 R1 R2 16 125 13 425 19 350 16 110 22 575 18 795	89 rpm 69 rpm R1 R2 R3 16125 13 425 12 500 19 350 16 110 15 000 22 575 18 795 17 500	R1 R2 R3 R4 16125 13 425 12 500 10 400 19 350 16 110 15 000 12 480 22 575 18 795 17 500 14 560	89 rpm 69 rpm Length A mm R1 R2 R3 R4 16 125 13 425 12 500 10 400 8 230 19 350 16 110 15 000 12 480 9 520 22 575 18 795 17 500 14 560 10 810

	В	С	D	D (iCER on-engine)
Dimensions (mm)	4 780	1 575	10 790	11 755
(mm)	F1	F2	F3	G
	13 655	13 655	12 730	2 455


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 909	6 668	7 012	6 764
BSGC (gas)	g/kWh	137.7	132.8	139.7	134.7
BSPC (pilot fuel)	g/kWh	0.6	0.7	0.6	0.7

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	175.8	169.8	177.8	173.8
BSFC (VCR diesel Tier II)	g/kWh	166.3	166.3	167.8	165.8

For definitions see page 66. iCER on-engine applies only to 5/6 cylinder applications

X72DF-2.2

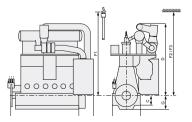
IMO Tier III in gas mode

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	69-79 rpm
Mean effective pressure at R1	15.7 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Lenath A	Dry mass tonnes			
	79 rpm 69 rpm				mm	
	R1	R2	R3	R4		
5	13 000	11 900	11 350	10 400	7 875	484
6	15 600	14 280	13 620	12 480	9 165	565

	В	С	D	D (iCER on-engine)
Dimensions	4 780	1 575	10 790	11 755
(mm)	F1	F2	F3	G
	13 655	13 655	12 730	2 455


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 813	6 715	6 876	6764
BSGC (gas)	g/kWh	135.7	133.7	137.0	134.7
BSPC (pilot fuel)	g/kWh	0.7	0.7	0.7	0.7

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	174.2	171.8	175.6	173.8
BSFC (VCR diesel Tier II)	g/kWh	166.0	166.0	166.7	165.8

For definitions see page 66. Engine optimised for reduced rating field and 5/6 cylinder applications

X82DF-1.0

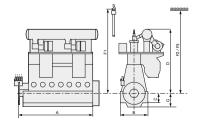
IMO Tier III in gas mode

Cylinder bore	820 mm
Piston stroke	3 375 mm
Speed	58-84 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.12

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output i	Length A [Dry mass		
Cyl.	84 rpm	58 rpm			mm	tonnes
	R1	R2	R3	R4		
6	25 920	21 600	17 880	14 940	10 425	805
7	30 240	25 200	20 860	17 430	11 865	910
8	34 560	28 800	23 840	19 920	13 305	1 020
9	38 880	32 400	26 820	22 410	14 745	1 160

	В	С	D	
Dimensions	5 050	1 800	12 310	
(mm)	F1	F2*	F3*	G
	15 080	-	-	2 700


BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 115	6 872	7 218	6 970
BSGC (gas)	g/kWh	141.8	136.8	143.8	138.8
BSPC (pilot fuel)	g/kWh	0.6	0.7	0.6	0.7

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	183.9	181.9	183.9	181.9

For definitions see page 66.
* Available on request

X82DF-2.0

IMO Tier III in gas mode

Cylinder bore	820 mm
Piston stroke	3 375 mm
Speed	58-84 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	4.12

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Length A	D			
Cyl.	84 rpm		58 rpm		mm	Dry mass tonnes
	R1	R2	R3	R4		
6	25 920	21 600	17 880	14 940	10 425	805
7	30 240	25 200	20 860	17 430	11 865	910
8	34 560	28 800	23 840	19 920	13 305	1 020
9	38 880	32 400	26 820	22 410	14 745	1 160

	В	C	D	
Dimensions	5 050	1 800	12 310	
(mm)	F1	F2*	F3*	G
	15 080	-	-	2 700

BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE


Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 807	6 559	6 905	6 658
BSGC (gas)	g/kWh	135.6	130.6	137.6	132.6
BSPC (pilot fuel)	g/kWh	0.6	0.7	0.6	0.7

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	177.2	171.2	179.2	175.2

For definitions see page 66.

^{*} Available on request

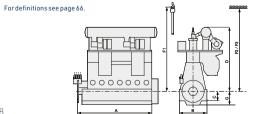
X92DF

IMO Tier III in gas mode

Cylinder bore	920 mm
Piston stroke	3 468 mm
Speed	70-80 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.77

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in kW at					_
Cyl.	80 rpm		70 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		10111100
6	31 920	26 580	27 930	23 250	11 755	1 120
7	37 240	31 010	32 585	27 125	13 345	1 260
8	42 560	35 440	37 240	31 000	14 935	1 380
9	47 880	39 870	41 895	34 875	17 960	1 630
10	53 200	44 300	46 550	38 750	19 550	1 790
11	58 520	48 730	51 205	42 625	21 215	1 960
12	63 840	53 160	55 860	46 500	22 875	2 140


	В	C	D	
Dimensions	5 550	1 900	13 140	
(mm)	F1	F2	F3	G
	15 520	15 530	14 260	2 970

BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 090	6 846	7 192	6 945
BSGC (gas)	g/kWh	141.2	136.2	143.2	138.2
BSPC (pilot fuel)	g/kWh	0.7	0.8	0.7	0.8

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	180.9	178.9	180.9	178.9

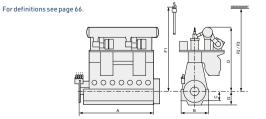
X92DF-2.0

IMO Tier III in gas mode

Cylinder bore	920 mm
Piston stroke	3 468 mm
Speed	70-80 rpm
Mean effective pressure at R1	17.3 bar
Stroke / bore	3.77

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Output in kW at					_
80 rpm		70 rpm		Length A mm	Dry mass tonnes
R1	R2	R3	R4		
31 920	26 580	27 930	23 250	11 755	1 120
37 240	31 010	32 585	27 125	13 345	1 260
42 560	35 440	37 240	31 000	14 935	1 380
47 880	39 870	41 895	34 875	17 960	1 630
53 200	44 300	46 550	38 750	19 550	1 790
58 520	48 730	51 205	42 625	21 215	1 960
63 840	53 160	55 860	46 500	22 875	2 140
	R1 31 920 37 240 42 560 47 880 53 200 58 520	80 rpm R1 R2 31 920 26 580 37 240 31 010 42 560 35 440 47 880 39 870 53 200 44 300 58 520 48 730	80 rpm 70 rpm R1 R2 R3 31 920 26 580 27 930 37 240 31 010 32 585 42 560 35 440 37 240 47 880 39 870 41 895 53 200 44 300 46 550 58 520 48 730 51 205	80 rpm 70 rpm R1 R2 R3 R4 31 920 26 580 27 930 23 250 37 240 31 010 32 585 27 125 42 560 35 440 37 240 31 000 47 880 39 870 41 895 34 875 53 200 44 300 46 550 38 750 58 520 48 730 51 205 42 625	80 rpm 70 rpm Length A mm R1 R2 R3 R4 31 920 26 580 27 930 23 250 11 755 37 240 31 010 32 585 27 125 13 345 42 560 35 440 37 240 31 000 14 935 47 880 39 870 41 895 34 875 17 960 53 200 44 300 46 550 38 750 19 550 58 520 48 730 51 205 42 625 21 215


	В	C	D	
Dimensions	5 550	1 900	13 140	
(mm)	F1	F2	F3	G
	15 520	15 530	14 260	2 970

BRAKE SPECIFIC CONSUMPTIONS IN GAS MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 751	6 504	6 850	6 602
BSGC (gas)	g/kWh	134.6	129.6	136.6	131.6
BSPC (pilot fuel)	g/kWh	0.5	0.6	0.5	0.6

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	172.7	166.7	174.7	170.7

X-DF Dual-Fuel LNG

X-DF Ammonia Engines

X52DF-A-1.0

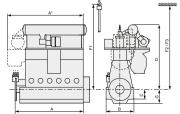
IMO Tier II & Tier III (SCR)

Cylinder bore	520 mm
Piston stroke	2 315 mm
Speed	79-105 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.45

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.	Output in kW at				I amouth A	Lameth A*	D
	105 rpm	7	79 rpm		Length A mm	Length A* mm	Dry mass tonnes
	R1	R2	R3	R4			
5	9 050	6 800	6 800	5 100	5 985	6 990	228
6	10 860	8 160	8 160	6 120	6 925	7 930	264
7	12 670	9 520	9 520	7 140	7 865		302
8	14 480	10 880	10 880	8 1 6 0	8 805		339
			R			n	n (isce)

Dimensions (mm)	В	C	U	D (ISCR)
	3 514	1 205	8 415	8 760
	F1	F2	F3	G
	10 350	10 350	9 800	1 910


BRAKE SPECIFIC FUEL CONSUMPTION IN AMMONIA MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 294	6 995	7 294	6 995
BSGC (gas)	g/kWh	371.5	355.4	371.5	355.4
BSPC (pilot fuel)	g/kWh	9.0	9.0	9.0	9.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	170.8	163.8	170.8	163.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

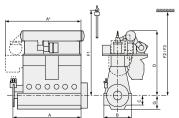
X62DF-A-1.0

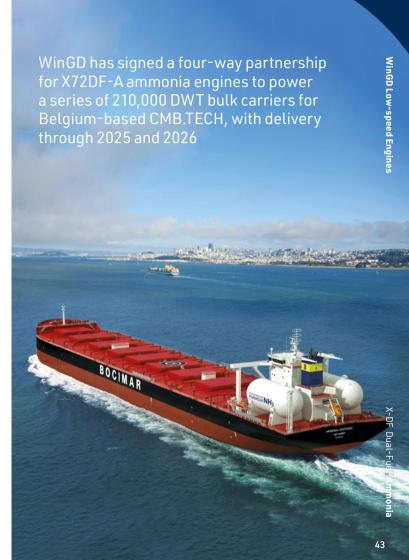
IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	77-103 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at			I awath A	Drumass
Cyl.	103 rpm		77 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	14 500	10 650	10 800	7 950	6 805	341
6	17 400	12 780	12 960	9 540	7 910	396
7	20 300	14 910	15 120	11 130	9 020	457
8	23 200	17 040	17 280	12 720	10 125	506
			В	С	D	
Dimensions (mm)			4 200	1 360	9 580	
			F1	F2	F3	G
		1	1 830	11 830	11 005	2 110


BRAKE SPECIFIC FUEL CONSUMPTION IN AMMONIA MODE


Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 209	6 974	7 166	6 974
BSGC (gas)	g/kWh	368.1	355.4	365.8	355.4
BSPC (pilot fuel)	g/kWh	8.5	8.5	8.5	8.5

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	168.8	163.3	167.8	163.3

For definitions see page 66. iSCR available for 5-to 7-cylinder engines with one TC on exhaust side

X-DF Ammonia Engines

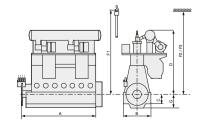
X72DF-A-1.0

IMO Tier II & Tier III (SCR)

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	66-89 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at				_
Cyl.	89 rpm	66	66 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	19 600	14 300	14 550	10 600	8 085	505
6	23 520	17 160	17 460	12 720	9 375	589
7	27 440	20 020	20 370	14 840	10 665	674
8	31 360	22 880	23 280	16 960	11 960	752
			В	С	D	
Dimensions (mm)			4 780	1 575	10 790	
			F1	F2	F3	G
		1	3 750	13 750	12 820	2 455


BRAKE SPECIFIC FUEL CONSUMPTION IN AMMONIA MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 209	6 974	7 166	6 974
BSGC (gas)	g/kWh	368.1	355.4	365.8	355.4
BSPC (pilot fuel)	g/kWh	8.5	8.5	8.5	8.5

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	168.8	163.3	167.8	163.3

For definitions see page 66.

X82DF-A-1.0

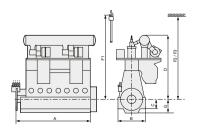
IMO Tier II & Tier III (SCR)

Cylinder bore	820 mm
Piston stroke	3 375
Speed	58-84 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	4.12

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at			Laurette A	Dry mass tonnes
Cyl.	84 rpm		58 rpm		Length A mm	
	R1	R2	R3	R4		
6	33 000	24 000	22 800	16 560	10 426	845
7	38 500	28 000	26 600	19 320	11 866	956
8	44 000	32 000	30 400	22 080	13 306	1 071
9	49 500	36 000	34 200	24 840	14746	1 218
				•		

	В	С	D	
Dimensions	5 050	1 800	12 310	
(mm)	F1	F2*	F3*	G
	15 250	-	-	2 700


BRAKE SPECIFIC FUEL CONSUMPTION IN AMMONIA MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 102	6 884	6 940	6 820
BSGC (gas)	g/kWh	361.8	350.7	353.5	347.4
BSPC (pilot fuel)	g/kWh	8.7	8.5	8.5	8.4

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	166.3	161.2	162.5	159.7

For definitions see page 66. * Available upon request

X-DFP by WinGD

X-DF LPG Engines

X52DF-P-1.0

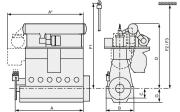
IMO Tier II & Tier III (SCR)

Cylinder bore	520 mm
Piston stroke	2 315 mm
Speed	79-105 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.45

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at			1	Length A*	Dry mass tonnes
Cyl.	105 rpm	105 rpm 79 rpm			Length A mm		
	R1	R2	R3	R4			
5	9 050	6 800	6 800	5 100	5 985	6 990	228
6	10 860	8 160	8 160	6 120	6 925	7 930	264
7	12 670	9 520	9 520	7 140	7 865		302
8	14 480	10 880	10 880	8 1 6 0	8 805		339

В	С	D	D (iSCR)
3 514	1 205	8 415	8 760
F1	F2	F3	G
10 350	10 350	9 800	1 910
	F1	F1 F2	F1 F2 F3


BRAKE SPECIFIC FUEL CONSUMPTION IN LPG MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 2 9 4	6 995	7 294	6 995
BSGC (gas)	g/kWh	150.2	143.7	150.2	143.7
BSPC (pilot fuel)	g/kWh	9.0	9.0	9.0	9.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	170.8	163.8	170.8	163.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

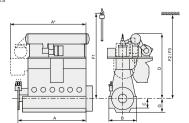
X62DF-P-1.0

IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	77-103 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at			I awath A	D
Cyl.	103 rpm	77 rpm			Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	14 500	10 650	10 800	7 950	6 805	341
6	17 400	12 780	12 960	9 540	7 910	396
7	20 300	14 910	15 120	11 130	9 020	457
8	23 200	17 040	17 280	12 720	10 125	506
			В	С	D	
	Dimensions		4 200	1 360	9 580	
	(mm)		F1	F2	F3	G
		1	1 830	11 830	11 005	2 110


BRAKE SPECIFIC FUEL CONSUMPTION IN LPG MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 209	6 974	7 166	6 974
BSGC (gas)	g/kWh	148.5	143.6	147.6	143.6
BSPC (pilot fuel)	g/kWh	8.5	8.5	8.5	8.5

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	168.8	163.3	167.8	163.3

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

X-DF Methanol Engines

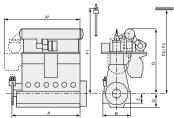
X52DF-M-S1.0

IMO Tier II & Tier III (SCR)

Cylinder bore	520 mm
Piston stroke	2 045 mm
Speed	80-120 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	3.93

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in kW at						_		
Cyl.	120 rpm	80) rpm		Length A mm	Length A*	Dry mass tonnes		
	R1	R2	R3	R4					
5	9 550	6 850	6 400	4 550	5 485	6 565	200		
6	11 460	8 220	7 680	5 460	6 345	7 415	226		
7	13 370	9 590	8 960	6 370	7 205		257		
8	15 280	10 960	10 240	7 280	8 065		287		
			В	С		D	D (iSCR)		
	Dimensions		3 100	1 185		7 775	8 000		
	(mm)		F1	F2		F3	G		
			9 3 4 0	9 340		8 800	1 675		


BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 897	6 645	6 940	6 855
BSGC (gas)	g/kWh	329.2	316.6	331.4	327.1
BSPC (pilot fuel)	g/kWh	8.1	8.1	8.1	8.1

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	164.8	158.8	165.8	165.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

X62DF-M-S1.0

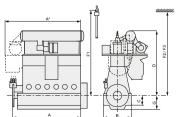
IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 245 mm
Speed	82-108 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	3.62

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Dry mass tonnes	Louist A	Output in kW at					
	Length A mm	82 rpm		8	108 rpm		
		R4	R3	R2	R1		
294	6 2 6 0	7 325	10 200	9 650	13 425	5	
341	7 2 6 0	8 790	12 240	11 580	16 110	6	
389	8 2 6 0	10 255	14 280	13 510	18 795	7	
436	9 2 6 0	11 720	16 320	15 440	21 480	8	

	В	C	D	D (iSCR)
Dimensions	3 440	1 295	8 575	9 020
(mm)	F1	F2	F3	G
	10 230	10 230	9 620	1 835


BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 897	6 688	6 812	6 731
BSGC (gas)	g/kWh	329.2	318.7	324.9	320.8
BSPC (pilot fuel)	g/kWh	8.1	8.1	8.1	8.1

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	164.8	159.8	162.8	160.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

X-DF Dual-Fuel Methanol

X-DF Methanol Engines

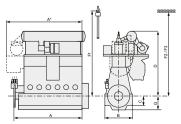
X62DF-M-1.0

IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	77-103 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at			1	B
Cyl.	103 rpm	77	rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	14 500	10 650	10 800	7 950	6 805	341
6	17 400	12 780	12 960	9 540	7 910	396
7	20 300	14 910	15 120	11 130	9 020	457
8	23 200	17 040	17 280	12 720	10 125	506
			В	С	D	
D	imensions		4 200	1 360	9 580	
(mm)			F1	F2	F3	G
		1	1 830	11 830	11 005	2 110


BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 064	6 633	7 021	6 833
BSGC (gas)	g/kWh	337.2	325.6	335.0	325.6
BSPC (pilot fuel)	g/kWh	8.3	8.3	8.3	8.3

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	168.8	163.3	167.8	163.3

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

X72DF-M-1.0

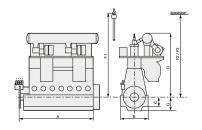
IMO Tier II & Tier III (SCR)

Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	66-89 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW at		1	D	
Cyl.	Cyl. 89 rpm R1 R2	66 rpm		Length A mm	Dry mass tonnes	
		R2	R3	R4		
5	19 600	14 300	14 550	10 600	8 085	505
6	23 520	17 160	17 460	12 720	9 3 7 5	589
7	27 440	20 020	20 370	14840	10 665	674
8	31 360	22 880	23 280	16 960	11 960	752
			В	С	D	

	В	C	D	
Dimensions	4 780	1 575	10 790	
(mm)	F1	F2	F3	G
	13 750	13 750	12 820	2 455


BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	7 065	6 835	7 023	6 835
BSGC (gas)	g/kWh	336.4	325.4	334.4	325.4
BSPC (pilot fuel)	g/kWh	8.7	8.4	8.6	8.4

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	168.8	163.3	167.8	163.3

For definitions see page 66.

X-DF Methanol Engines

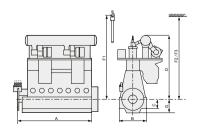
X82DF-M-1.0

IMO Tier II & Tier III (SCR)

Cylinder bore	820 mm
Piston stroke	3 375
Speed	58-84 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	4.12

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in	kW at			_
Cyl.	Cyl. 84 rpm	58	3 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
6	33 000	24 000	22 800	16 560	10 426	845
7	38 500	28 000	26 600	19 320	11 866	956
8	44 000	32 000	30 400	22 080	13 306	1 071
9	49 500	36 000	34 200	24 840	14 746	1 218
			В	С	D	
	Dimensions		5 050	1 800	12 310	
	(mm)		F1	F2*	F3*	G
		1	5 250	-	-	2 700


BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE

Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 961	6 748	6 799	6 684
BSGC (gas)	g/kWh	332.2	321.5	324.1	318.3
BSPC (pilot fuel)	g/kWh	8.2	8.2	8.2	8.2

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	166.3	161.2	162.5	159.7

For definitions see page 66. * Available upon request

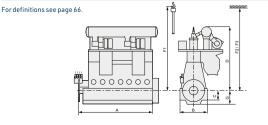
X92DF-M-1.0

IMO Tier II & Tier III (SCR)

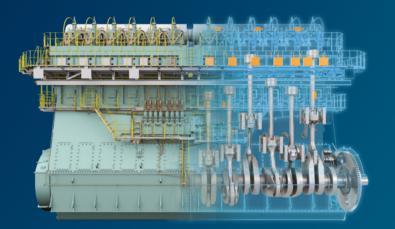
Cylinder bore	920 mm
Piston stroke	3 468
Speed	70-80 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	3.77

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

	Output in	kW at		Louise A	B
80 rpm	70) rpm		Length A mm	Dry mass tonnes
R1	R2	R3	R4		
38 700	27 900	33 900	24 420	11 605	1 176
45 150	32 550	39 550	28 490	13 195	1 323
51 600	37 200	45 200	32 560	14 785	1 449
58 050	41 850	50 850	36 630	17 960	1 771
64 500	46 500	56 500	40 700	19 550	1 880
70 950	51 150	62 150	44 770	21 215	2 058
77 400	55 800	67 800	48 840	22 875	2 247
	R1 38 700 45 150 51 600 58 050 64 500 70 950	80 rpm 70 R1 R2 38 700 27 900 45 150 32 550 51 600 37 200 58 050 41 850 64 500 46 500 70 950 51 150	R1 R2 R3 38 700 27 900 33 900 45 150 32 550 39 550 51 600 37 200 45 200 58 050 41 850 50 850 64 500 46 500 56 500 70 950 51 150 62 150	80 rpm 70 rpm R1 R2 R3 R4 38 700 27 900 33 900 24 420 45 150 32 550 39 550 28 490 51 600 37 200 45 200 32 560 58 050 41 850 50 850 36 630 64 500 46 500 56 550 40 700 70 950 51 150 62 150 44 770	80 rpm 70 rpm Length A mm R1 R2 R3 R4 38 700 27 900 33 900 24 420 11 605 45 150 32 550 39 550 28 490 13 195 51 600 37 200 45 200 32 560 14 785 58 050 41 850 50 850 36 630 17 960 64 500 46 500 56 500 40 700 19 550 70 950 51 150 62 150 44 770 21 215


Dimensions (mm)	В	C	D	
	5 550	1 900	13 150	
	F1	F2	F3	G
	15 640	15 650	14360	2 970

BRAKE SPECIFIC FUEL CONSUMPTION IN METHANOL MODE


Rating point		R1	R2	R3	R4
BSEC (energy)	kJ/kWh	6 855	6 603	6 812	6 645
BSGC (gas)	g/kWh	327.3	314.6	325.1	316.8
BSPC (pilot fuel)	g/kWh	8.0	8.0	8.0	8.0

BRAKE SPECIFIC FUEL CONSUMPTION IN DIESEL MODE

Rating point		R1	R2	R3	R4
BSFC (diesel Tier II)	g/kWh	163.8	157.8	162.8	158.8

Achieving a new GUINNESS WORLD RECORDS™

The most powerful marine internal combustion Otto cycle engine commercially available is the WinGD 12X92DF

Designed by WinGD Ltd. Switzerland, with a power output of 63.840 MW, first built by CMD (CSSC-MES Diesel Co., Ltd) in China and verified on 17 September 2020.

56

X-Engines Diesel

X52-1.1 IMO Tier II & Tier III (SCR)

Cylinder bore	520 mm
Piston stroke	2 315 mm
Speed	79-105 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.45

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

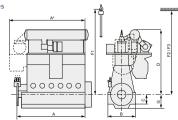
		Output in kW at				_	
Cyl.	105 rpm	79	79 rpm		Length A mm	Length A* mm	Dry mass tonnes
	R1	R2	R3	R4			
5	9 050	6 800	6 800	5 100	5 985	6 990	217
6	10 860	8 160	8 160	6 120	6 925	7 930	251
7	12 670	9 520	9 520	7 140	7 865		288
8	14 480	10 880	10 880	8 160	8 805		323
			В	С		D	D (iSCR)
	Dimensions		3 5 1 4	1 205		8 415	8 760
	(mm)		F1	F2		F3	G

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

10350

Rating point		R1	R2	R3	R4
BMEP, bar		21.0	15.8	21.0	15.8
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	169.8	162.8	169.8	162.8

10 350


9 800

1 910

R1 BSFC (g/kWh), Tier II	Power(%)				
	50	65	75	90	100
Delta Bypass Tuning	163.7	161.5	161.3	164.1	169.8
Low-load Tuning	160.2	158.0	161.3	164.5	170.8

For definitions see page 66. iSCR available for

5- to 7-cylinder engines with one TC on exhaust side

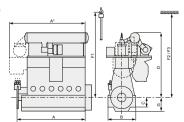
X52-S2.0

IMO Tier II & Tier III (SCR)

Cylinder bore	520 mm
Piston stroke	2 045 mm
Speed	80-120 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	3.93

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Output in kW at		1 4b A	*	_	
	120 rpm	120 rpm 80 rpm		Length A mm	Length A* mm	Dry mass tonnes	
	R1	R2	R3	R4			
5	9 550	6 850	6 400	4 550	5 485	6 5 6 5	190
6	11 460	8 220	7 680	5 460	6 345	7 415	215
7	13 370	9 590	8 960	6 3 7 0	7 205		245
8	15 280	10 960	10 240	7 280	8 0 6 5		275
			В	С		D	D (iSCR)


В	C	D	D (iSCR)
3 100	1 185	7 775	8 000
F1	F2	F3	G
9 340	9 340	8 800	1 675
	F1	3 100 1 185 F1 F2	3 100 1 185 7 775 F1 F2 F3

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

Rating point		R1	R2	R3	R4
BMEP, bar		22.0	15.8	22.1	15.7
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	163.8	157.8	164.8	162.8

R1 BSFC (g/kWh), Tier II					
	50	65	75	90	100
Delta Bypass Tuning	157.7	155.5	155.3	158.1	163.8
Low-load Tuning	154.2	152.0	155.3	158.5	164.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

X-Engines Diesel

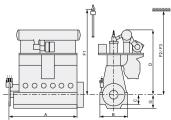
X62-S2.0

IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 245 mm
Speed	82-108 rpm
Mean effective pressure at R1	22 bar
Stroke / bore	3.62

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output	in kW at		Laurette A	D
Cyl.	108 rpm	82 rpm			Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	13 425	9 650	10 200	7 325	6 260	280
6	16 110	11 580	12 240	8 790	7 260	325
7	18 795	13 510	14 280	10 255	8 260	370
8	21 480	15 440	16 320	11 720	9 260	415


	В	С	D	D (iSCR)
Dimensions	3 440	1 295	8 575	9 020
(mm)	F1	F2	F3	G
	10 230	10 230	9 620	1 835

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

Rating point		R1	R2	R3	R4
BMEP, bar		22.0	15.8	22.0	15.8
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	163.8	158.8	161.8	159.8

R1 BSFC (g/kWh), Tier II		Po	ower(%)		
	50	65	75	90	100
Delta Bypass Tuning	155.7	154.7	155.3	158.1	163.8
Low-load Tuning	152.2	151.2	155.3	158.5	164.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

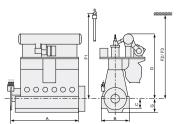
X62-1.1

IMO Tier II & Tier III (SCR)

Cylinder bore	620 mm
Piston stroke	2 658 mm
Speed	77-103 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Output	in kW at		1	D
	103 rpm	77 rpm			Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	14 500	10 650	10 800	7 950	6 805	325
6	17 400	12 780	12 960	9 540	7 910	377
7	20 300	14910	15 120	11 130	9 020	435
8	23 200	17 040	17 280	12 720	10 125	482


	В	C	D	
Dimensions	4 200	1 360	9 580	
(mm)	F1	F2	F3	G
	11 830	11 830	11 005	2 110

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

Rating point		R1	R2	R3	R4
BMEP, bar		21.0	15.5	21.0	15.4
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	167.8	162.3	166.8	162.3

R1 BSFC (g/kWh), Tier II		Po	ower(%)		
	50	65	75	90	100
Delta Bypass Tuning	160.7	158.8	159.3	162.1	167.8
Low-load Tuning	157.2	155.3	159.3	162.5	168.8

For definitions see page 66. iSCR available for 5- to 7-cylinder engines with one TC on exhaust side

2 700

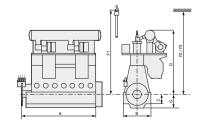
X-Engines Diesel

X72-B IMO Tier II & Tier III (SCR)

	<u> </u>
Cylinder bore	720 mm
Piston stroke	3 086 mm
Speed	66-89 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	4.29

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

Cyl.		Output in	n kW at			_
	89 rpm	(66 rpm		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		
5	19 600	14300	14 550	10 600	8 085	481
6	23 520	17 160	17 460	12 720	9 375	561
7	27 440	20 020	20 370	14 840	10 665	642
8	31 360	22 880	23 280	16 960	11 960	716
			В	С	D	


	В	C	D	
Dimensions	4 780	1 575	10 790	
(mm)	F1	F2	F3	G
	13 750	13 750	12 820	2 455

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

Rating point		R1	R2	R3	R4
BMEP, bar		21.0	15.3	21.0	15.3
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	167.8	162.3	166.8	162.3

R1 BSFC (g/kWh), Tier II	Power(%)				
	50	65	75	90	100
Delta Bypass Tuning	160.7	158.8	159.3	162.1	167.8
Low-load Tuning	157.2	155.3	159.3	162.5	168.8

For definitions see page 66.

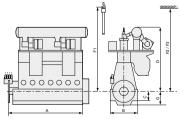
X82-2.0

IMO Tier II & Tier III (SCR)

0 11 1 1	000
Cylinder bore	820 mm
Piston stroke	3 375 mm
Speed	58-84 rpm
Mean effective pressure at R1	22.0 bar
Stroke / bore	4.12

RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Output in kW				
Cyl.	84 rpm		m		Length A mm	Dry mass tonnes
	R1	R2	R3	R4		23111100
6	33 000	24 000	22 800	16 560	10 426	805
7	38 500	28 000	26 600	19 320	11 866	910
8	44 000	32 000	30 400	22 080	13 306	1 020
9	49 500	36 000	34 200	24 840	14 746	1 160
		В		С	D	
	Dimensions	5 050		1 800	12 310	
	(mm)	F1		F2*	E3*	G


BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

15 250

Rating point		R1	R2	R3	R4
BMEP, bar		22.0	16.0	22.0	16.0
BSFC (g/kWh)	Delta Bypass Tuning, 100% power, Tier II	165.3	160.2	161.5	158.7

R1 BSFC (g/kWh), Tier II		Po	ower(%)		
	50	65	75	90	100
Delta Bypass Tuning	159.2	157.0	156.8	159.6	165.3
Low-load Tuning	155.7	153.5	156.8	160.0	166.3

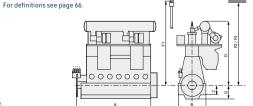
For definitions see page 66.
* Available upon request

X-Engines Diesel

X92-1.1

IMO Tier II & Tier III (SCR)

Cylinder bore	920 mm
Piston stroke	3 468 mm
Speed	70-80 rpm
Mean effective pressure at R1	21.0 bar
Stroke / bore	3.77


RATED POWER, PRINCIPAL DIMENSIONS AND MASS

		Louist A. Donner					
Cyl.	80 rpm	70 rp	ım		Length A mm	Length A Dry mass mm tonnes	
	R1	R2	R3	R4			
6	38 700	27 900	33 900	24 420	11 605	1 120	
7	45 150	32 550	39 550	28 490	13 195	1 260	
8	51 600	37 200	45 200	32 560	14 785	1 380	
9	58 050	41 850	50 850	36 630	17 960	1 630	
10	64 500	46 500	56 500	40 700	19 550	1 790	
11	70 950	51 150	62 150	44 770	21 215	1 960	
12	77 400	55 800	67 800	48 840	22 875	2 140	
		В		С	D		
	Dimensions	5 550	1 9	000	13 150		
	(mm)	F1		F2	F3	G	
		15 640	15 6	50	14 360	2 970	

BRAKE SPECIFIC FUEL CONSUMPTION (BSFC) IN g/kWh

Rating po	oint		R1	R2	R3	R4
BMEP, ba	ar		21.0	15.1	21.0	15.1
BSFC (g/	kWh)	Delta Bypass Tuning, 100% power, Tier II	162.8	156.8	161.8	157.8

R1 BSFC (g/kWh), Tier II	Power(%)				
_	50	65	75	90	100
Delta Bypass Tuning	156.7	154.5	154.3	157.1	162.8
Low-load Tuning	151.6	149.6	153.8	157.5	163.8

General Technical Data Application

WinGD's General Technical Data (GTD) application provides information to plan the layout of WinGD marine low-speed engines.

Create new projects in three simple steps:

- . Select an engine from the product portfolio
- 2. Define a configuration which meets the vessel requirements
- 3. Analyse the resulting performance data and export as a PDF

Start your next engine project by downloading GTD: www.wingd.com/en/media/general-technical-data

Scan this QR code to send the above link by email

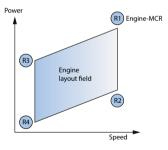
The program is a desktop application and supported by all Windows operating systems from version 7.

Engine Definitions and Notes

ISO Standard (ISO 3046-1) reference conditions

1.0 bar Total barometric pressure at R1

25°C Suction air temperature


30% Relative humidity

25°C Cooling water temperature before engine

Rating points

The engine layout fields for WinGD low-speed engines are defined by the power/speed rating points R1, R2, R3 and R4 (see diagram below).

R1 is the nominal maximum continuous rating (MCR) of an engine.

Any power and speed within the respective engine layout field may be selected as the Contracted-MCR (CMCR) point for an engine.

Dimensions and weights

- All dimensions and weights are not binding. For detailed information and updates, please visit: www.wingd.com/productssolutions/engines
- A Engine length from the coupling flange to the end of the bedplate
- A* Engine length from the TC aft end to the end of the bedolate
- **3** Width of the engine seating
- C Distance from the centre of the crankshaft to the underside of the foot flange
- D Distance from the centre of the crankshaft to the highest point of the engine
- **F1** Minimum height for vertical removal of the piston
- **F2** Minimum height for vertical removal of the piston with double-jib crane
- **F3** Minimum height for tilted removal of the piston with double-jib crane
- **G** Distance from the centre of the crankshaft to the lowest point of the engine
- The engine weight is a net value and excludes any liquids.

Fuel/energy consumption

All brake specific fuel consumptions (BSFC) and brake specific pilot fuel consumptions (BSPC) are quoted for fuel of lower calorific value 42.7 MJ/kg.

Brake specific gas consumptions (BSGC) are quoted for gas of lower calorific value 50.0 MJ/kg.

For other fuel types, the following reference lower calorific values are applied:

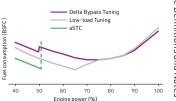
Ammonia 18.6MJ/kg Methanol 19.9MJ/kg LPG 46.0MJ/kg

Brake specific energy consumptions (BSEC) for dual-fuel engines are based on energy delivered to the engine as gas and liquid fuel for one kilowatt hour mechanical power output.

For all WinGD low-speed diesel and dual-fuel engines stepwise tolerances have been introduced for the brake specific fuel and energy consumption (BSFC/BSEC) guarantee, referring to ISO standard reference conditions (ISO 15550 and 3046):

- +5% tolerance for 100% to 85% engine power
- +6% tolerance for <85% to 65% engine power
- +7% tolerance for <65% to 50% engine power

The BSFC/BSEC guarantee is possible at up to three power points between 50--100%.


Available engine tunings

Delta Bypass Tuning and Low-load Tuning are available for certain WinGD low-speed diesel engines to provide optimum fuel consumption for different engine loads. Delta Bypass Tuning and Low-load Tuning focus on reducing fuel consumption in the operating range below 90% or 75% engine power.

The advanced technology of Steam Production Control (SPC) can be added to the Low-load and Delta Bypass Tuning to increase the steam production, while keeping the overall fuel consumption at a minimum.

Dual tuning is available on request and in cooperation with classification societies.

Automated Sequential Turbocharging (aSTC) is available as an option for X82-2.0 and X92-1.1 engines with multi-turbocharger configurations. aSTC significantly reduces the engine's consumption at low loads.

44

WinGD Technologies

X-DF Technology

A proven and reliable engine platform for fuel flexible vessels

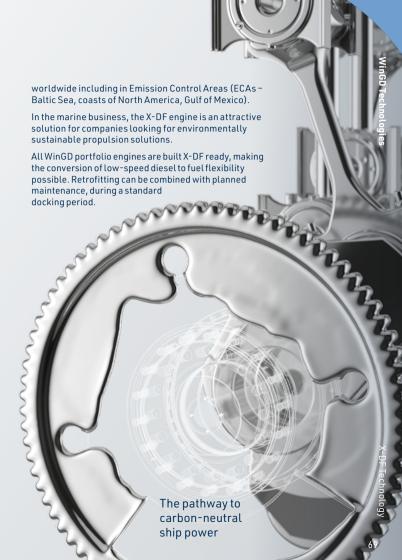
WinGD is a pioneer in modern dualfuel technology for two-stroke marine engines, with LNG fuelled engines in operation since 2016. With well over four million running hours to date, the in-service experience behind X-DF far exceeds that of similar engine concepts. Now the X-DF series is evolving, bringing the proven and reliable Diesel cycle performance of its X-Engines to offer ammonia and methanol dual-fuelled engines.

X-DF for LNG

Using WinGD's dual-fuel X-DF engines gives operators flexibility in reducing emissions. Fossil LNG offers an immediate 15-20% reduction in greenhouse gas emissions. By blending or replacing fossil LNG with carbon-neutral synthetic or bio-LNG, operators can reduce their emissions further without modification. All X-DF engines can be retrofitted for methanol or ammonia, giving unrivalled choice in how operators meet their emissions targets.

The low-cost, highly efficient and reliable fuel injection concept used by WinGD's dual-fuel LNG engines offers

several advantages over other dualfuel engine concepts:


- Simple installation, low-cost auxiliary systems and low power consumption contribute to lower investment and life cycle costs
- Extremely small pilot fuel quantity, below 1% of total heat release
- Engines can be operated on gas down to very low loads
- Low NO_X emissions, close to zero SO_X emissions, IMO Tier III compliant without exhaust-gas after-treatment
- Particulate matter emissions significantly reduced

X-DF for ammonia and methanol

Ammonia-fuelled X-DF-A and methanol-fuelled X-DF-M dual-fuel engines are now available for order, with the first vessels using these engines to enter service in 2025. The following pages provide concept overviews and availability.

Applications

X-DF technology is applicable on a variety of vessel types, including LNG carriers, chemical tankers, container ships and vessels operating

X-DF-A Technology

X-DFA by WingD

WinGD's first engine platform designed for carbon-free fuel

Available for order now and with first engine delivery due in 2025, X-DF-A will enable deep-sea ship owners and operators to choose carbon-free ammonia for their main engines.

The engine platform deployed in X-DF-A engines will be familiar to operators of WinGD's well-established, highly efficient diesel-fuelled X-Engines. Notable features include comparable performance with X-Engines in both ammonia mode and diesel mode, low pilot fuel requirements precisely controlled through common rail injection and NO_X Tier III compliance in both modes with Selective Catalytic Reduction (SCR).

Safety has been a key priority during the development of engines using ammonia due to the inherent characteristics of the fuel. Already supported with Approval-in-Principle from several leading classification societies, X-DF-A delivers the assurance that ship owners and operators need to integrate ammoniafuelled engines into vessel designs today.

Injection concept

The X-DF-A is a dual-fuel engine equipped with technology enabling the engine to operate either on ammonia or diesel fuel. The engine operates according to the diesel principle in both diesel mode and ammonia mode. It is equipped with two separate fuel injection systems. The diesel fuel injection system is used for diesel mode and remains active in ammonia mode for injecting a small amount of pilot fuel, needed for stable ignition of ammonia fuel.

Engine parameters

The ammonia engines have the same rating field as WinGD's diesel engines and will be available with the same cylinder configurations. The mechanical design is based on the existing WinGD X-Engine portfolio, with the addition of an ammonia fuel injection system including the additional servo oil system to drive it.

IMO Tier III solutions

The X-DF-A engines are IMO Tier II NOx compliant without exhaust gas aftertreatment in both diesel mode and ammonia mode. IMO Tier III compliance can be reached in both operating modes with a high-pressure SCR (HP SCR) installed upstream of the turbochargers.

The HP SCR system can be installed off-engine or on-engine (ISCR) depending on the engine type. The on-engine option (ISCR) is available only for single turbocharger engines.

Retrofit ready

All WinGD engines are built on a similar, robust platform capable of handling the high pressures and temperatures that may be needed for various alternative fuels. Conversion packages for converting diesel and LNG engines to X-DF-A engines will be available shortly after newbuild engines are developed for the relevant hore size.

All X-DF-A engines can be ordered to be delivered ready to use LPG fuel (see X-DF-P engines, overleaf) and can subsequently be adapted for ammonia fuel with only minor modification

Minimum extra CAPEX

Highest efficiencies

Minimal pilot

100% safe and secure operation

X-DF-A

X-DF-P Technology

WinGD's fuel-flexible solution for LPG and ammonia fuel

Available for order now for first engine delivery from end of 2027 onwards. The X-DF-P engines will enable LPG/Ammonia Carrier owners and operators to use LPG fuel for their main engines. The same fuel injection system concept is used as for the X-DF-A ammonia engine. This will allow a simple conversion to X-DF-A with only minor changes once ammonia fuel is available.

The engine platform deployed in X-DF-P engines will be familiar to operators of WinGD's wellestablished, highly efficient dieselfuelled X-Engines. Notable features include comparable performance with X-Engines in both LPG mode and diesel mode, low pitot fuel requirements precisely controlled through common rail injection and NO_X Tier III compliance in both modes with Selective Catalytic Reduction (SCR).

Safety has been key priority during the development of the engines, which follows the design principles of the X-DF-A engines using ammonia due to the inherent characteristics of the fuel. X-DF-P delivers the assurance that ship owners and operators need to integrate LPG-fuelled engines into vessel designs today.

Injection concept

The X-DF-P is a dual-fuel engine equipped with technology enabling the engine to operate either on LPG or diesel fuel. The engine operates according to the diesel principle in both diesel mode and LPG mode. It is equipped with two separate fuel injection systems.

The diesel fuel injection system is used for diesel mode and remains active in LPG mode for injecting a small amount of pilot fuel, needed for stable ignition of LPG fuel.

Engine parameters

The LPG engines have the same rating field as WinGD's diesel engines and will be available with the same cylinder configurations. The mechanical design is based on the existing WinGD X-Engine portfolio, with the addition of an LPG fuel injection system including the additional servo oil system to drive it.

IMO Tier III solutions

The X-DF-P engines are IMO Tier II NOx compliant without an exhaust gas aftertreatment in both diesel mode and LPG mode. IMO Tier III compliance can be reached in both operating modes with a high-pressure SCR (HP SCR) installed upstream the turbochargers.

The HP SCR system can be installed off-engine or on-engine (iSCR) depending on the engine type. The on-engine option (iSCR) is available for single turbocharger engines.

Retrofit ready

All WinGD engines are built on a similar, robust platform capable of handling the high pressures and temperatures that may be needed for various alternative fuels. This ensures that retrofitting between all fuels – including conventional liquid fuel, LNG, LPG, methanol and ammonia – is both technically and economically feasible, while ensuring comparable performance on any fuel.

Conversion packages for converting diesel and X-DF-A to X-DF-P engines or vice versa will be available shortly after newbuild engines are developed for the relevant bore size.

Minimum extra CAPEX

Highest efficiencies

Minimal pilot fuel needed

X-DF-P

X-DF-M Technology

X-DFM by WinGD

Methanol-fuelled capability based on proven engine performance

Available for order now and with first engine delivery committed for 2025, X-DF-M enables deep-sea ship owners and operators to choose near carbon-neutral green methanol or low-carbon blue methanol for their main engines.

The engine platform deployed in X-DF-M engines will be familiar to operators of the WinGD wellestablished, highly efficient dieselfuelled X-Engines. Notable features include comparable performance with X-Engines in both methanol mode and diesel mode, low pilot fuel requirements precisely controlled through common rail injection, and NO_X Tier III compliance in both modes with Selective Catalytic Reduction (SCR).

Methanol technology

The engine operates according to the diesel principle in both diesel mode and methanol mode. The base engine is a Diesel cycle X-Engine Diesel with an additional methanol fuel injection system. The diesel fuel injection system is used when the engine is running in diesel mode and to inject a small amount of pilot fuel in methanol mode. The pilot fuel injection is

required to have an accurate ignition of the methanol fuel at all engine loads.

Main engine parameters

The methanol engines have the same rating field as WinGD's diesel engines and will be available with the same cylinder configurations. The mechanical design is based on today's WinGD X-Engine portfolio, with addition of the methanol fuel injection system including the additional servo oil system to drive it.

IMO Tier III solutions

The methanol fuelled engines can meet IMO Tier II NO $_{\rm X}$ levels in both diesel mode and methanol mode. Exhaust gas aftertreatment is required to meet IMO Tier III NO $_{\rm X}$ levels. SCR can be used for this.

SCR can be located either upstream the TC turbine (high-pressure SCR) or downstream (low-pressure SCR). On-engine SCR (iSCR) is also available for single turbocharger engines.

Retrofit ready

All WinGD engines are built on a similar, robust platform capable of handling the high pressures and temperatures that may be needed for various alternative fuels. This ensures that retrofitting between all fuels – including conventional liquid fuel, LNG, methanol and ammonia – is both technically and economically feasible, while ensuring comparable performance on any fuel.

Conversion packages for converting diesel and LNG engines to X-DF-M engines will be available shortly after new build engines are developed for the relevant bore size.

Minimum extra CAPEX

Highest efficiencies

Minimal pilot fuel needed

X-UF-M

Variable Compression Ratio (VCR) Technology

X-DFVCR

Compression without compromise for optimal efficiency on all fuels

Marine dual-fuel engines were conceived to enable the use of cleaner alternative fuels alongside conventional liquid fuel. However the use of two different fuels necessitates. a design compromise that has

prevented both fuels from being used with maximum efficiency, and which has been unavoidable until now. As each fuel has a different compression ratio at which ideal combustion is achieved, engine designers have had to choose which fuel to favour when setting this fixed parameter.

To redress this, WinGD and Mitsui E&S DU Co have developed Variable Compression Ratio (VCR) technology. VCR allows an engine's compression ratio to be dynamically adapted depending on current operation point, ambient condition and ideal combustion pressures. This offers

improved efficiency regardless of the fuel, and makes operating with both fuels more feasible

Significant performance improvements

In tests on a 6X72DF engine with MES-DU, the VCR technology has delivered significant performance improvements in gas mode. This includes a reduction of gas consumption of 2-6g/kWh depending on engine load, with particularly high reductions at part load. WinGD expects further reductions of methane slip and lower total GHG emissions through a combination of VCR and iCER to X-DF engines. In diesel mode, the ability to keep a higher compression ratio across the engine load range led to an 8-12g/ kWh reduction, depending on engine type and rating.

This performance brings diesel consumption to a similar level to a conventional diesel engine - eliminating the traditional compromise in diesel efficiency of a lean burn pre-mixed engine, Based on the performance improvements mentioned, the following fuel consumption, emissions and OPEX calculations have been made for some kev vessel types.

The calculations for each mode assume that the engine has been running in the same mode for a full year at an assumed typical load profile.

Considering these potential savings and the further savings achieved under any future carbon pricing regime. WinGD anticipates very short payback periods for VCR technology regardless of the fuel used.

EXAMPLE CONSUMPTION & GHG EMISSIONS

COMPARED TO X-DE 2 0 'NON-VCR'

Type of vessel	Engine type	Engine rating	Consumption savings		GHG reduction		Annual OPEX savings: fuel	Annual OPEX savings: GHG	Annual OPEX savings: sum
			tons/year	%	tons/year	%	US\$/year	US\$/year*	US\$/year*
174k cum LNGC	2x 5X72DF-2.2 VCR	2 x 12 129 kW	GM: 361	GM: -2.4%	GM: 1 655	GM: -3.7%	GM: -307 000	GM: -148 985	GM: -455 985
		75 RPM	DM:1036	DM:-5.6%	DM:3260	DM: -5.6%	DM: -549 000	DM: -293 800	DM: -842 800
7000 CEU PCTC	7X62DF-S2.0 VCR	11 920 kW	GM: 163	GM: -2.3%	GM: 761	GM: -3.5%	GM: -138 700	GM: -64490	GM: -203 190
		104.8 RPM	DM: 494	DM: -5.7%	DM: 1555	DM: -5.7%	DM: -261 600	DM: -139 950	DM: -401 550
1900 TEU Feeder	6X62DF-S2.0 VCR	11 500 kW	GM: 146	GM: -3.1%	GM: 611	GM:-4.6%	GM: -124 000	GM: -54 990	GM: -178 990
		105 RPM	DM: 440	DM: -7.7%	DM: 1 385	DM: -7.7%	DM: -233 000	DM: -124 650	DM: -357 650
115k dwt BC	6X62DF-2.1 VCR	10 450 kW	GM: 121	GM: -2.3%	GM: 610	GM: -3.8%	GM: -103 000	GM: -54 900	GM: -157 900
		82 RPM	DM: 424	DM:-6.5%	DM: 1336	DM:-6.5%	DM: -233 250	DM: -139 950	DM: -373 200

Fuel Prices: LNG = \$850: VLSF0 = \$530 Typical operation profile used per vessel segment GM: Continuous Gas Mode operation DM: Continuous Diesel Mode operation

* based on carbon tax price = \$90

Simple, sturdy and easy to install

VCR adjusts compression ratio by raising or lowering the piston rod. It features a hydraulic mechanism fitted to the crosshead pin, allowing for the position of the piston rod to be changed. The piston position is controlled by the amount of oil in the lower chamber located below the piston rod. The amount of oil is controlled by filling pressurised lube oil through a knee lever and by draining the lube oil from the lower chamber.

This simple, sturdy design has no impact on installation requirements or engine footprint and requires no specific maintenance between drydocking periods.

VCR is available as an option for 62and 72-bore X-DF engines, including both short- and long-stroke versions of the X62DF. A portfolio rollout to other engine types will follow based on market demand

- Feed pump
 - Electrically driven, it increases the engine lube oil pressure (4...5bar) to the feed pressure of 40...50bar. Variable motor speed to minimise power consumption.
- Feed manifold Distributes the lube oil to all cvlinders.
- Pressure control valve Limits the pressure in the feed manifold.

- Solenoid proportional valve Controls the flow of oil to the lower chamber of each cylinder.
- Knee lever of VCR Connects the proportional valve with the lower hydraulic chamber.
- **Delivery valve**

Spring loaded non-return valve.

- Lower chamber Lifts the piston rod depending on amount of oil in it.
- Solenoid relief valve Controls opening and closing of outlet valve
- Outlet valve Releases oil from the lower hydraulic chamber to lower the position of the piston rod.
- Upper chamber Holds the piston down under any situation (e.g. engine start or malfunction of exhaust valve).
- Lift-off v/v with filling orifice Retains oil volume in upper chamber in case of low oil pressure in lower chamber to avoid lift-off of piston.
- Knee lever for piston cooling Existing knee lever for usual piston coolina.
- Sensor for piston position Measures piston timing and enables control of piston rod position.
- Sensor for air temperature In piston underside. Measures scavenge air temperature close to the scavenging ports of each cylinder.
- Crank angle signal Existing engine crank angle signal used also for the VCR control

WinGD Technologies VCR adjusts compression ratio by raising or lowering the piston rod. It features a hydraulic mechanism fitted to the crosshead pin, allowing for the position of the piston rod to be changed. **Engine** Control 12 Lube oil 6

X-DF2.0 Technology

X-DF2.0 by WinGD

using inert gas to adjust the gas/air

and emissions.

diesel mode.

mix improving both fuel consumption

As well as reducing fuel consumption.

iCER delivers a 50% reduction in

methane slip in gas mode, while allowing Tier III compliance in

Building on proven dual-fuel LNG performance

With X-DF2.0, WinGD builds on its proven, reliable dual-fuel LNG platform with even greater efficiency and emissions performance.

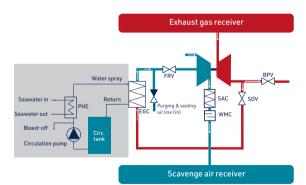
The technology – intelligent Control by Exhaust Recycling (iCER) – delivers superior combustion control,

Reduced methane slip and CO₂ emissions

Lower fuel consumption

Proven design for reliability and safety

iCER


The iCER system is designed to cool and recirculate part of the exhaust gas. It is made up of a low-pressure exhaust recycling path with an efficient Exhaust Gas Cooler (EGC). When recirculated exhaust gas is mixed with scavenge air, carbon dioxide partly replaces the oxygen in the fresh air, reducing the mixture's reactivity during combustion.

This increases the ignition delay and stabilises the combustion speed. By raising resistance to auto-ignition and reducing combustion speed, iCER enables combustion controls of that the compression ratio can be increased and thermal efficiency improved.

iCER On-engine

The iCER system is also available in an on-engine configuration, enabling the emissions reduction technology to be installed without impact on engine footprint. On-engine iCER offers the same advantages while simplifying testing, building and installation of the engine, as well as reducing the engine room space needed for emissions reduction equipment.

The EGC and all exhaust gas flow control components are installed on the engine, offering significant engine room design flexibility. The production-friendly design also minimises manufacturing and installation costs.

Abbreviation:

FRV Flow Regulating Valve
SOV Shut Off Valve
SAC Scavenge Air Cooler
BPV Back Pressure Valve

WMC Water Mist Catcher
EGC Exhaust Gas Cooler
PHE Plate Heat Exchanger

WiCE

WinGD Integrated Control Electronics (WiCE) provides engines with the robust connectivity and security needed to support more advanced control strategies, as well as increased integration with other ship systems.

Modern ship operations demand more from engine control systems. In addition to controlling basic functions they must monitor and regulate emissions performance, ensure that engines work in harmony with a wider range of auxiliary equipment and enable data connectivity with wider ship and fleet systems.

Cybersecure

All vessels ordered from 2024 will need to meet IACS Unified Requirement E27 for cyber security of installed systems. WiCE has received SP1 type approval from DNV, assuring customers that it is capable of meeting this standard. Security features include identification and authentication, software authenticity verification, backup and rollback functionality, cybersecurity event logging and traffic monitoring and control.

Modular and upgradable

WiCE is designed for an increasingly connected and data-driven ship operating environment. The system – comprising a main control unit, cylinder control unit and communication gateway unit – is fully modular in both software and hardware, making it easily adaptable for future needs. Each unit can be independently verified and validated so that they can be updated and exchanged without impacting the functionality of other units.

Enhanced connectivity

WiCE features a dedicated communication gateway unit allowing it to link to diagnostics systems and receive software updates without jeopardising the integrity of mission-critical engine control. The powerful communication bus enables rapid, secure and seamless data exchange among system units.

IMO Tier III Solutions

WinGD offers a range of solutions for vessels that need to comply with IMO Tier III NO_X emission limits in specified NO_X Emission Control Areas

X-DF

Using LNG is a viable solution for dealing with both IMO Tier III NO $_{\rm X}$ standards and requirements for SO $_{\rm X}$. X-DF engines operating in gas mode meet Tier III limits without aftertreatment, while engines with X-DF2.0 technology comply in both gas and diesel modes.

X-Engines

For diesel engines, WinGD offers three abatement options using selective catalytic reduction (SCR) technology, which uses a reductant (typically ammonia generated from urea) and a catalyst to remove NO_X from exhaust gas.

High Pressure SCR

The SCR reactor is located before the turbine, allowing the reactor to be designed in the most compact way due to the higher density of the exhaust gas. WinGD has developed high pressure SCR solutions for X-Engines with single and multiturbocharger applications.

All WinGD low-speed engines included in this booklet are fully compliant with IMO NO_X limits specified in Annex VI of the MARPOL 73/78.

Low Pressure SCR

The SCR reactor is located after the turbine. Low-pressure SCR is typically larger than the high pressure solution but can be integrated into the exhaust stream system. WinGD's interface specification for low-pressure SCR covers all known low-pressure SCR system providers.

Integrated SCR (iSCR)

Integrated SCR (iSCR) is installed 'on engine' to meet demand for a smaller, more compact solution to fulfil Tier III emission regulations. The reactor is integrated directly to the exhaust manifold, providing high-pressure operation (HP-SCR) while promoting higher operation temperatures for more efficient catalysis. The compact design has minimal external piping. The iSCR is available for selected WinGD low-speed diesel engines.

Click or scan the QR code to find out more

Cylinder Lubrication

Pulse Jet Cylinder Lubricating System

WinGD's Pulse Jet system optimises piston running by providing a homogeneous lubricant distribution on the cylinder liner surface. Regular injections at minimal lubricant feed rate enable operational expenses at the lowest possible level.

WinGD Piston Running Concept with Pulse Jet Cylinder Lubrication System

The Pulse Jet system ensures safe lubrication and acid-neutralisation for piston rings and the cylinder liner running surface. Spray angles and electronically controlled injection timing are tailored to achieve homogeneous lubricant distribution. Zig-zag-shaped grooves on several levels provide further distribution of the freshly injected lubricant in the upper stroke area. Specifically designed piston rings further support the oil film conditioning.

Cylinder Lubricating Oils

Using the Pulse Jet system with WinGD-validated lubricants is the prerequisite to achieving extended time between overhauls of piston rings and cylinder liners with outstanding reliability and engine availability. By applying regular laboratory and on-board analysis of piston underside drain oil samples, lubricant consumption can be reduced to the minimum for the engine's specific operating conditions.

Easily understandable documentation gives guidance for selecting and using the right cylinder lubricant for diesel, gas, and all other emerging marine fuels.

WinGD Lubricants Guideline

Click or scan the QR code to find out more

Validated engine oils for WinGD engines

Click or scan the QR code to find out more

Steam Production Control

In order to improve the steam production on board via the exhaust gas economiser, X-Engines can be equipped with a controlled exhaust gas bypass valve.

Such a valve can be opened on demand when the exhaust gas temperature is lower than the target temperature, or when the steam pressure is lower than required.

As a consequence of the exhaust gas bypass opening, the exhaust gas temperature increases and steam production through the boiler is increased.

As an example, Figure 1 shows the same X-Engine with and without the variable bypass. With the variable bypass it is possible to target exactly the minimum steam production needed if the exhaust gas temperature is lower than that required. Where no variable bypass is installed, it is necessary to switch on the thermal boiler to reach the targeted steam production.

Figure 2 indicates clearly that increasing the steam production with an engine variable bypass is more efficient than switching on the thermal boiler, and fuel consumption savings of 2-6 g/kWh are possible.

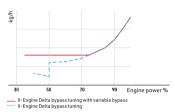


Figure 1

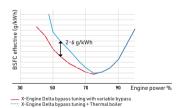


Figure 2

Integrated Energy Solutions

Electric and hybrid power technologies offer exceptional optimisation potential for today's vessels, helping to improve fuel efficiency and reduce emissions while improving reliability and load response across an integrated power system.

Shaft generators and hybrid systems

WinGD takes a holistic approach to designing power solutions that go far beyond the main engine. Optimally sized electric components and sub-systems are incorporated and configured to suit individual vessel characteristics and operating profiles.

The proprietary X-EL Energy Manager maintains optimal operating efficiency – ensuring that vessels built or retrofitted today are prepared to face operational and regulatory challenges across their lifetime.

OFFERING DESCRIPTION

Advisory for System Integration

- Energy efficiency analyses and studies
- Virtual integration and transient operation of the complete hybrid system enabling early risk management
- Recommendation for topology, components selection, control strategy:
- Quantitative economic feasibility (CAPEX, OPEX, ROI, TCO)

X-EL Energy Manager

- WinGD Hybrid Control System for holistic energy management*
- Active control logic among the main engine and the rest of the key system components (e.g. PTO/PTI, Battery Pack, Power Converters, DC-Link, etc.)
- The system components are selected and procured by either the 3rd party system integrator or the shipyard
- Based on a commercial agreement with particular system integrators, the interface and functional specifications could also be implemented on 3rd party controllers

Integrated Hybrid Energy Systems

- All items included in "Advisory for System Integration"
- System architecture and control strategy definitions, implementation, and validation
- Selection of the key system components (e.g. PTO/PTI, Battery Pack, Power Converters, DC-Link, etc.)
- WinGD Hybrid Control System for holistic energy management with active control logic among the main engine and the rest of the key system components*
- End-to-end project management for delivery of a turn-key integrated hybrid powerpack

Advisory Services

WinGD's technical experts will help mitigate risks and uncertainties throughout the lifecycle of a fleet, from feasibilities and early decisions, through design and implementation, to in-service advisory, diagnostics, and performance monitoring.

WinGD's simulations-based toolchain is used for conducting energy efficiency studies at the feasibility stage, providing accurate quantitative

predictions of system performance and the savings associated in multiple scenarios.

As an outcome, the optimum system topology and control strategies of an integrated hybrid system can be determined to fulfil operational and commercial requirements.

The transient-capable physical main engine models embedded have a distinctive advantage over the commonly used map-based approach.

^{*} Provided that the required interfaces among the equipment are available

X-EL Integrated Energy Solutions

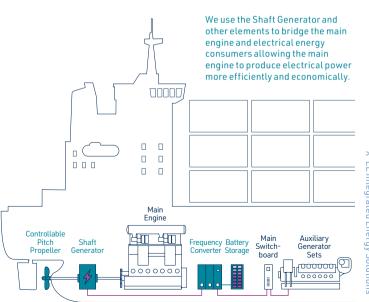
X-EL Energy Manager

Shaft generator and hybrid power arrangements integrated by WinGD are all governed by the state-of-theart X-EL Energy Manager.

Validation and tuning of its control and optimisation logic take place at an early stage in development due to the simulation and development toolchain. This enables customers to assess the build and operation of the

power arrangement in digital form. simplifying the physical integration. commissioning, and testing of the systems.

The X-EL Energy Manager sets new standards for vessel energy optimisation. It is a universal solution to control a wide range of hybrid energy system variants and aims at operating the system in an optimal state.


High operational flexibility

- Intelligently optimised power production and consumption on board at any given moment, considering various factors, such as actual cargo capacity utilisation, ship speed demand, environmental conditions and route.

Optimal energy resources utilisation

- Maximised usage of the main engine and alternative energy resources in a hybrid setup for electrical power production.

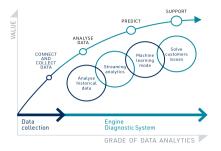
- Minimised running hours of the Auxiliary Engines, or operated with the highest possible efficiency when needed.
- Ensured safe no-auxiliary-engines operation during ocean crossing and optimal energy production for safe manoeuvring.
- Improved system performance and stability in transient conditions.

WiDE (WinGD integrated Digital Expert)

WIDE WING

WinGD's integrated Digital Expert (WiDE) system is a comprehensive engine monitoring, diagnostics and advisory system that delivers optimisation and predictive maintenance insights and enables remote support and troubleshooting assistance for crews and onshore teams.

WiDE constantly collects engine and ship data, making them available both onboard and onshore. Data is analysed to provide valuable insight on the status of the engine's components, to anticipate alarms and to facilitate daily crew operations.


These capabilities are integrated into a user-friendly onboard system comprising state-of-the-art hardware, software and data analytics techniques, supported by robust and cyber secure ship-to-shore connectivity.

All WinGD engines are delivered with the hardware and monitoring software needed for WiDE. Additional analysis and expert services are available on subscription.

The engine's digital twin enables expert engine analysis

Using the power of modern digital data monitoring, WiDE delivers customers valuable information and access to remote support to assist in optimising the ship's performance.

Key Benefits

- Performance monitoring and optimisation advice tailored specifically for your engine.
- Predictive troubleshooting minimises sub-optimal running, increases engine availability and streamlines maintenance planning.
- Availability of key performance indicators on ship and onshore, speeding up communication and benefitting fleet monitoring.

- Enhanced remote services support crew interventions on board and, through WinGD 24x7, offer around-the-clock technical assistance from WinGD experts when required.
- Real-time engine data sharing enhances integration with energy management and voyage optimisation systems.
- Connected performance management and diagnostics prepare for increased engine operation automation.

WiDE (WinGD integrated Digital Expert)

Optimisation

WiDE diagnostics are based on a thermodynamic engine model which constantly calculates the ideal engine performance for real-time operational parameters and environmental conditions. The deviation between actual and ideal engine performance is quantified, potential sources are identified and solutions recommended.

Troubleshooting

Potential problems are reported by WiDE's troubleshooting app, identifying the part involved, automatically providing a list of alarms with drawings and documents for the affected components. Detailed instructions for prevention are displayed using extracts from the engine manual.

Remote Support

Enhanced troubleshooting is provided remotely by WinGD Operations Experts. The WinGD 24x7 support centre offers around-the clock support in the event of

a problem and provides regular reports on the health status of the machinery, including recommendations for optimal engine operations.

CII Compliance and hull efficiency

Future updates will include the possibility to calculate the vessel CII rating. Further modules will allow to monitor hull and propeller fouling.

Operators can drill down into current vessel ratings to see whether engine operation can be optimised to improve CII rating.

Online Platforms

Data from WiDE are available on two dedicated online platforms. E-Vessel Tracker (eVT) provides access to historical engine, ship and fleet data including the ability to download and visualise data. WiDE Online provides an extended view and analysis of current engine status, including engine speed and performance, subsystems state and faults identified.

Service by Wing D

On-demand access to genuine spare parts, field service and expert technical advisory, wherever you are.

From 2025 Global Service by WinGD offers direct operational and maintenance support for in-service WinGD engines across their lifecycle – streamlining your access to the unique expertise behind WinGD's engine designs and ensuring the best possible performance across your engine's working life.

Driven by our global headquarters in Winterthur and supported by local service hubs for rapid delivery of parts and service across the world, Global Service by WinGD offers three streams of service to our customers and end users:

Certified WinGD spare parts

Original, high-quality spare parts (new and reconditioned) delivered via fast, flexible shipping wherever and whenever you need it - ensuring minimal downtime, reduced maintenance costs and efficient inventory management.

Expert field service support

Fast, responsive field service by expert engineers for maintenance, troubleshooting and customised solutions – maximising uptime and ensuring safe, efficient operation worldwide.

Comprehensive technical services

Expert services including scheduled maintenance and performance, emissions and compliance optimisation - safeguarding engine reliability, minimising total overall costs and extending operational life.

Global Service by WinGD

Service you can trust for optimised operations across your engine lifecycle

With Global Service by WinGD customers can harness our legacy of engine design excellence and portfolio of engine optimisation solutions to secure the long-term success of their operations. WinGD offers several other services designed to meet industry needs, which can be integrated into maintenance agreements as required.

With capabilities in digital optimisation, upgrades, and future-focused retrofits, WinGD ensures engines meet evolving standards of performance, fuel efficiency and emissions – delivering long, productive lives and empowering your sustained success.

Contact your local WinGD representative today to learn how:

- Our original spare parts ensure long-term performance and reliability.
- Our digital solutions provide real-time advisory and predictive maintenance to support troubleshooting, prevent engine failures and reduce downtime.
- Our scheduled maintenance plans help avoid unexpected break downs and keep vessels operational for longer.
- Our technical support can help you optimise and maintain engine and power configurations in line with current and emerging emissions regulations
- Our comprehensive service offering reduces total cost of ownership, saving on repairs, fuel, compliance costs and operational inefficiencies.

Engines under warranty

The primary contacts for issues during the engine warranty period are the delivering yards and engine manufacturers. For direct assistance by WinGD, claims can be forwarded to: warranty@wingd.com

Other service providers

WinGD engine users can also access in-service support from the service providers listed on page 110.

Engine Retrofits & Upgrades

Tailored solutions for existing WinGD engines to extend vessel compliance, maintain peak performance and reduce operating costs.

Maritime emissions and energy intensity regulations – including the EU Emissions Trading System, FuelEU Maritime and imminent IMO mid-term measures for reducing greenhouse gas emissions – are raising the baseline for vessel operating costs. In the future it will be these costs, rather than the durability of a vessel and its machinery, that will determine how long it can be operated profitably.

By focusing on optimising the efficiency of existing engines and adapting them to lower carbon fuels, operators can both reduce operating costs (OPEX) and extend the viable life of their current fleet – ensuring that today's vessels remain compliant and competitive. WinGD provides a one-stop-shop for fuel conversions and energy efficiency upgrades for its engines already in service.

WinGD engines are designed to be upgradable, with a modular design approach and a common base platform across engines for all fuel types. Similarly, WinGD control, monitoring, emissions abatement and efficiency technologies are designed for both existing and new engines.

With retrofit-ready engines and upgrade solutions from the same original designer, WinGD leverages its unique product expertise and existing supplier and project partner network to significantly reduce the cost and duration of your upgrade or retrofit.

Upgrades offered include:

Injection system retrofits – turn a single- fuel diesel engine into a LNG, methanol or ammonia dualfuel engine.

X-DF2.0 upgrades – add iCER and/or VCR technology to existing X-DF LNG fuelled engines for enhanced diesel and gas mode efficiency and lower methane slip (pages 76-81).

Engine derating – increase engine efficiency by reducing maximum power output and thus lower the specific fuel consumption.

X-EL Energy Management System retrofits – boost operational flexibility, improve your EEXI figures, reduce fuel consumption and emissions with installation of shaft generators, battery packs, DC bus components and WinGD's advanced energy management system (pages 88-91).

Digital optimisation – install our WiDE integrated digital expert on any WinGD engine for higher engine efficiency, conditionbased maintenance and remote troubleshooting support by WinGD experts (WiDE, pages 98-101).

Engine control system update – upgrade to the latest cyber security standards and enable advanced tunings, control functionalities and extended auxiliary system compatibility with WinGD integrated Control Electronics (WiCE, page 82).

With cutting-edge upgrade solutions straight from the engine designer, operators can improve the efficiency and service life of their WinGD engines while reducing operational costs and contributing to a more sustainable future.

Lubrication system upgrades – reduce oil consumption with the latest WinGD tribology concepts, including cylinder lube, and high-pressure crosshead lubrication oil systems (pg. 85).

Advanced engine tuning upgrades – re-tune the engine to optimise the combustion process based on principles applied on newer engine types and improve efficiency while complying with Tier II/Tier III limits.

Contact email: retrofit.solutions@wingd.com

WinGD retrofit solutions

lutions

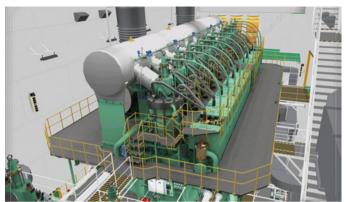
The fuel flexible engines of today and tomorrow require crew who are confident operating the latest innovation and technology.

From basic engine operation to advanced optimisation, WinGD provides a range of training solutions across a wide network of global locations and online, giving your crew the skills they need to operate WinGD engines safely, reliably and efficiently.

Certified Instructors

WinGD training courses are conducted by professional, STCW-95 certified instructors. Trainers explain the theory and functionality of all WinGD engines using modern training methods, helping crews and onshore support teams understand the design, function and repair and maintenance procedures for key components.

Global Network


WinGD operates four dedicated training facilities, with a growing number of centres operated by authorised WinGD training partners. Our wide network at key global shipping and crewing hubs makes it easy to incorporate training into your crew schedules whether travelling from their home locations or directly from yessels

See our full list of training locations and partners at www.wingd.com/en/service-support/training/training-facilities/

Expert Knowledge

Training courses are standardised, centrally coordinated and certified by WinGD. Theoretical and practical expert knowledge covers the full range of WinGD products.

WinGD Xpert engine room simulator

Courses

Specialised, product-specific courses in varying levels are available.

- Engine Theoretical course (3 days)
- Engine Operation Advanced course (5 days)
- Engine technology specialised courses (depending on the topic, 1-2 days)

Customised courses covering specific areas of interest, can be arranged on request. All types of courses can be offered to best suit the trainee regarding course content, level, duration, language and location.

See the list of courses at www.wingd.com/service-support/training/course-specifications

or email: training@wingd.com

Training

Simulation Software

WinGD training courses offer high efficiency learning through perfectly-balanced human and technology factors. Using a wide range of simulation software and hardware as well as real engine parts, the participants will benefit through hands-on, real-life scenarios.

Engine Room Simulators

By providing a realistic setting for training in day-to-day engine operations and troubleshooting, the simulators allow crew to experience challenging scenarios such as black-outs and fires in a safe and controlled environment.

Training hosted outside of WinGD Training Centres are supported by Full Mission Simulators or similar Engine Room Simulator software.

Global Coverage

Working together with a global network of authorised Training Partners, training courses are available at a location best suited to the customer. This flexibility allows WinGD to provide training courses wherever it best achieves the desired outcomes, to optimise a ship's operation and to reduce the travelling time and expenses of the participants.

If travel to a Training Centre is not possible, instructors are available to perform training sessions on board the ships (anchored, at shipyards or during voyage) and Crewing Agents' offices.

A list of upcoming sessions can be found online at wingd.com or by request at: training@wingd.com

Main Office WinGD Ltd.

Schützenstrasse 3, 8400 Winterthur, Switzerland

Tel: +41 52 264 8844 Email: info@wingd.com

Engine Research & Innovation Centre WinGD Ltd.

Building 650 Sulzer Allee 19 / Sulzer Industriepark 8404 Oberwinterthur, Switzerland

Tel: +41 52 264 8808 Email: info@wingd.com

China

WinGD (Shanghai) Co., Ltd.

Room 601-604, Building 2, No.1333 Laiyang Road, No.601 Donggao Road, Pudong New Area, Shanghai, P.R. China

Tel: +86 21 61681958 Email: china@wingd.com

Dalian Office

Office 1501 Building B Dalian International Ocean Building No.11 Yu Guang Street, Zhongshan District, Dalian, Liaoning Province 116001 P.R. China

WinGD Ltd. Hong Kong Branch

18/F Worldwide House

19 Des Voeux Road Central, Hong Kong

Tel: +852 2522 7355 Email: hongkong@wingd.com

Taiwan WinGD Ltd.

12F. No. 101, Sec 2, Nanjing East. Road, Taipei City 104089, Taiwan

Tel: +88627724-8382 Email: hsinyi.liu@wingd.com

Japan

WinGD Ltd.

Tokyo

BUREX Kyobashi Bldg. #601, 7-14 Kyobashi 2-Chome, Chuo-ku, Tokyo 104-0031, Japan

Tel: +81 3 6271 0057 Email: japan@wingd.com

Kobe

Nihon Bldg. #411, 79 Kyomachi, Chuo-ku, Kobe City, Hyogo Pref. 650-0034, Japan

Singapore WinGD

Singapore Pte. Ltd.

SWHTZERLAND

63 Hillview Ave, Lam soon industrial building, floor 10-14

669569, Singapore

Tel: +65 82998934 Email: singapore@wingd.com

South Korea

WinGD Ltd.

Busan

8, Bagyeongjun-gil, Ilgwang-myeon Gijang-gun, Busan, 46040, Republic of Korea

Tel: +82 51 320 9800 Email: korea@wingd.com

Seoul

1619 Ho, 16F, 92, Saemunam-ro, Jongno-gu, Seoul, 03186, Republic of Korea

Tel: +8227520501 Email: korea@wingd.com

WinGD Offices

WinGD Sales Agents

Contacts

WinGD Sales Agents

Bangladesh

TSI Limited

Dhaka Office: House-3(4th Floor), Road-7, Block-F, Banani, Dhaka-1213, Bangladesh

E-mail: TSI@dhaka.net

Chittagong Office: Makka Madinah Trade Centre (15th Floor), 78, Agrabad C/A, Chittagong-4100. Bangladesh

Tel: +880 3172 6846 Email: tsimarineltd@gmail.com TSI@hhts.net

....

Wärtsilä Brazil Ltda.

Rua da Alfândega, 33 – 90 andar Centro 20070-000 Rio de Janeiro, RJ Brasil

Tel: +552122062500 Email: Lucas.correa@wartsila.com

Canada

Brazil

Allied Marine & Industrial

1 Lake Road, Port Colborne, ON L3K 1A2, Canada

Tel: +1 905 834 8275 Email: rgair@allmind.com

Cyprus/Israel

Cass Technava Ltd.

4, Riga Fereou Str. Omega Court, 5th Floor, Flat 51 3095 Limassol, Cyprus

Tel: +357 25 81 99 21 Email: info@cass-technava-cy.com Egypt, Iraq, Kuwait, Oman, Saudi Arabia, UAE

AIB Group FZE LLC.

Business Centre, Sharjah Publishing City Free Zone, Sharjah, UAE

Tel: +971 56 683 43 89
Email: ibrahim@aibgroup.me
Finland. Norway & Sweden

Eiken Maritime AS

Øvre Langgate 57-59 NO-3110 Tønsberg, Norway

Tel: +47 33 48 31 00 Email: post@eikenmaritime.no

France

JEREP sarl

17, rue Jean MERMOZ F. 75008 Paris, France

Email: guillaume.deroys@smswinterthur.com

Mob: +33607051179

Greece

Technava S.A.

6-8 Agias Kyriakis Str. ,175 64 Paleo Faliro, Greece

Tel: +30 210 41 13 916

Italy & Monaco

STU srl

Via G. Casaregis 22/1, 16129 Genova, Italy Contact person: Mr. Cataldo (Dino) Gravina

Email: d.gravina@st-united.eu Tel: +39 010 586 671

Netherlands

Wärtsilä Netherlands B.V. Zwolle

Wärtsilä Netherlands B.V. Hanzelaan 95, 8017 JE, Zwolle, Netherlands

Tel: +31 (0) 88 980 3000

Poland

Wärtsilä Polska Sp. z o.o. Marine Solutions

Ul. Twarda 12, 80-871 Gdansk, Poland

Tel: +48 58 347 85 00

 $Email: \ contact.poland@wartsila.com$

Russia

Wärtsilä Vostok LLC Marine Solutions & Services Office

Business centre Linkor 36 A Petrogradskaya naberezhnaya 197101 St. Petersburg, Russia

Tel: +7 812 448 3248

Spain

Wärtsilä Ibérica S.A. Marine Solutions & Services Office

Poligono Industrial Landabaso s/n ES-48370 Bermeo, Spain

Tel: +34 946 170 100

Turkey

Bulutlu Marine

Postane Mah. Beyzade Sok. No:4 34940 Tuzla Istanbul, Turkey

Tel: +90 216 510 4797 Email info@bulutlumarine.com

HK

Wärtsilä UK Ltd. Marine Solutions & Seals and

Bearings Product Company UK (PCUK)

4 Marples Way, Havant Hampshire PO9 1NX, United Kingdom

Tel: +44 239 240 01 21

Vietnam

Viet Phong Industrial Services Co., Ltd.

4th floor, New Skyline Tower, Lot CC2 Van Quan – Yen Phuc New Urban Area, Van Quan Ward, Ha Dong District, Ha Noi, Vietnam

Tel: +84 91 568 28 58 Email: sales@vpis.vn

Engine Builder Service Contacts

China

CSSC Marine Service Co., Ltd. (CMS)

(Servicing for HHM, CMD & CMP) manufactured engines)

Warranty claims/Service

+862160750962 +8613120794000 (Available 24/7)

Email: service.sha@csscservice.com

Spare parts:

+86 21 6075 0962 (direct) Tel:

+86 21 5131 0006 Ext. 6622 +86 137 6459 0349 (Mr. Xu) Email: sales.sha@csscservice.com

China Shipbuilding Industry Corporation Diesel Engine Co., Ltd. (CSE)

(Servicing for DMD, YMD & QMD manufactured engines)

Technical service and spare parts

Contact: Mr. Yang Mingliang

Office: +86 532 8670 8080 ext. 9919 Mobile: +86 135 8149 0632

Email: technicalservice@cse.com.cn

Yuchai Marine Power Co., Ltd.

+86 756 5598086 Email: service@vcmp.com.cn

Japan

(YCMP)

Hitachi Zosen Marine Engine Co., Ltd.

Osaka 559-8559, Japan

+81 6 6569 0502 Tel:

Mitsui E&S DU Co., Ltd. (MESDU)

Technical Support

+81 791 24 2286 Email: du-after@mes.co.ip

Parts Sales

٠١٥ +81 791 24 2285 Email: du-parts-a@mes.co.ip

Japan Engine Corporation (J-ENG)

(for spare parts and service engineers) (Head Quarters & Plant)

+81 78 949 0804 Email: service@j-eng.co.jp

South Korea

HD Hyundai Heavy Industries Co., Ltd.

Tel: +82 70 8670 1122 Email: service@hyundai-gs.com

Hanwha Engine Co., Ltd

+82 10 3559 8836 (24/7) Email: service.engine@hsdengine.com

7-89 Nankokita 1-chome, Suminoe-ku

Email: de-hzds@hitachizosen.co.jp

WIDE

Emergency Support

+41 52 264 8604 technical.reguest@wingd.com

WinGD Engine Builders

China

China State Shipbuilding Corporation Co., Ltd. (CSSC)

CSSC-MES Diesel Co., Ltd. (CMD)

No.6, Xinyuan Rd (S), Pudong New Area, Shanghai, China, 201306

Tel: +86 21 31777072

Hudong Heavy Machinery Co., Ltd. (HHM)

No. 2851 Pudong Dadao, Shanghai China, 200129

el: +86 21 3177 7071

CSSC Engine Co., Ltd. (CSE) CSE (Headquarter)

No. 501 East Lijiang Road, Huangdao District, Qingdao, Shandong, China, 266520

Tel: +86 532 86708080-8502 Email: sales@cse.com.cn

Dalian Marine Diesel Co., Ltd (CSE-DMD)

No. 1-2 Haifang Street, Xigang District, Dalian, Liaoning, China, 116021

Tel: +86 411 84411558 Email: dmd@onlineln.cn

Yichang Marine Diesel Engine Co., Ltd (CSE-YMD)

No. 93, Xinling 2 Road, Yichang Hubei, China, 443002

Tel: +86 717 6468689 Email: business@ymd.com.cn

Yuchai Marine Power Co Ltd. (YCMP)

Fushan Industrial Park, Zhuhai Guangdong Province, China, 519175

Tel: +86 756 559 8023 Email: sales@ycmp.com.cn

Japan

Hitachi Zosen Marine Engine Co., Ltd. Head Office

1, Ariake, Nagasu-machi, Tamana-gun Kumamoto, 869-0193, Japan

Tel: +81 968 78 2261

Tokyo Office

15th floor, Omori Bellport, 26-3, Minami 6-chome, Shinagawa-ku, Tokyo, 140-0013, Japan

Tel: +81 3 6404 0141

Email: de-tokyo@hitachizosen.co.jp

Mitsui E&S DU Co., Ltd. (MESDU)

Head Office

5292 Aioi, Aioi shi, Hyogo 678–0041, Japan

Tel: +81 7 9124 2606

Tokyo Sales Office

6-4, Tsukiji 5-Chome, Chuo-ku, Tokyo, 104-8439, Japan

Tel: +81 3 3544 3131

South Korea

HD Hyundai Heavy Industries Co., Ltd.

1000, Bangeojinsunhwan-doro Dong-gu, Ulsan, 44032, South Korea Engine System Sales Dept., Rep. of Korea

Tel: +82 52 202 7281 Email: enginesales@hhi.co.kr

Hanwha Engine Co., Ltd.

67, Gongdan-ro, Seongsan-gu Changwon-si, Gyeongsangnam-do, South Korea 51561, Republic of Korea

Tel: Domestic: +82 55 260 6514
Tel: Overseas: +82 55 260 8323
Email: sangsoo1.lee@hanwha.com

Notes

Notes

Notes

The data contained in this document serves as informational purposes only and is provided by WinGD Ltd. without any respective guarantee.

Committed to the decarbonisation of marine transportation through sustainable energy systems.

WinGD designs marine power ecosystems utilising the most advanced technology in emissions reduction, fuel efficiency, digitalisation, service and support. With their two-stroke low-speed engines at the heart of the power equation, WinGD sets the industry standard for reliability, safety, efficiency and environmental design.

Headquartered in Winterthur, Switzerland, since its inception as the Sulzer Diesel Engine business in 1893, it is powering the transformation to a sustainable future.

WinGD is a CSSC Group company.

